15 research outputs found

    Cortico-cerebellar functional connectivity and sequencing of movements in schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormal execution of several movements in a sequence is a frequent finding in schizophrenia. Successful performance of such motor acts requires correct integration of cortico-subcortical processes, particularly those related to cerebellar functions. Abnormal connectivity between cortical and cerebellar regions with resulting cognitive dysmetria has been proposed as the core dysfunction behind many signs and symptoms of schizophrenia. The aim of the present study was to assess if these proposed abnormalities in connectivity are a unifying feature of schizophrenia, or, rather, reflect a specific symptom domain of a heterogeneous disease. We predicted that abnormal functional connectivity between the motor cortex and cerebellum would be linked with abnormal performance of movement sequencing.</p> <p>Methods</p> <p>We examined 24 schizophrenia patients (SCH) and 24 age-, sex-, and handedness-matched healthy controls (HC) using fMRI during a modified finger-tapping task. The ability to perform movement sequencing was tested using the Neurological Evaluation Scale (NES). The subjects were categorized into two groups, with (SQ+) and without (SQ-) movement sequencing abnormalities, according to the NES-SQ score. The effects of diagnosis and movement sequencing abnormalities on the functional connectivity parameters between the motor cortex and cerebellum (MC-CRBL) and the supplementary motor cortex and cerebellum (SMA-CRBL) activated during the motor task were analyzed.</p> <p>Results</p> <p>We found no effect of diagnosis on the functional connectivity measures. There was, however, a significant effect on the SQ group: SQ + patients showed a lower level of MC-CRBL connectivity than SQ- patients and healthy controls. Moreover, the level of MC-CRBL and SMA-CRBL negatively correlated with the magnitude of NES-SQ abnormalities, but with no other NES domain.</p> <p>Conclusions</p> <p>Abnormal cortico-cerebellar functional connectivity during the execution of a motor task is linked with movement sequencing abnormalities in schizophrenia, but not with the diagnosis of schizophrenia per se. It seems that specific patterns of inter-regional connectivity are linked with corresponding signs and symptoms of clinically heterogeneous conditions such as schizophrenia.</p

    Generic acquisition protocol for quantitative MRI of the spinal cord

    Get PDF
    Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, including a lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area computation, multi-echo gradient echo for gray matter cross-sectional area, and magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. In a companion paper from the same authors, the spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine generic protocol are also available in an open-access document that can be found at https://github.com/spine-generic/protocols. The protocol will serve as a starting point for researchers and clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in neuroimaging protocols will be more common. The protocol could be implemented by any trained MR technician or by a researcher/clinician familiar with MRI acquisition

    A fuzzy upgrading of integrated vague managerial and engineering knowledge

    No full text
    In reality it is not possible to separate managerial and engineering knowledge without a considerable information loss. Realistic integrated conventional managerial/engineering files are rather vague and very sparse. They are not suitable for direct applications of fuzzy reasoning algorithms. A fuzzy upgrading is a retrospective application of the knowledge of engineering methods and integration of large set of specific and rather isolated detailed information items. Any upgrading is highly subjective and ad hoc in nature. The upgrading objectivity can be increased by a set of upgrading algorithms. Two of them (discriminative power evaluation and fractal analysis) are described. The fractal analysis gives a trade-off between general and specific knowledge items and is presented separately as Appendix. A case study (an upgrading of sugar-cane-plant knowledge base) is presented

    Diffusion tensor imaging predicts functional impairment in mild-to-moderate cervical spondylotic myelopathy

    No full text
    BACKGROUND CONTEXT: Magnetic resonance imaging (MRI) is the standard imaging modality for the assessment of cervical spinal cord; however, MRI assessment of the spinal cord in cervical spondylotic myelopathy patients has not demonstrated a consistent association with neurologic function or outcome after surgical or medical intervention. Thus, there is a need for sensitive imaging biomarkers that can predict functional impairment in patients with advanced cervical spondylosis

    Presymptomatic spondylotic cervical myelopathy: an updated predictive model

    No full text
    Spondylotic cervical cord compression detected by imaging methods is a prerequisite for the clinical diagnosis of spondylotic cervical myelopathy (SCM). Little is known about the spontaneous course and prognosis of clinically “silent” presymptomatic spondylotic cervical cord compression (P-SCCC). The aim of the present study was to update a previously published model predictive for the development of clinically symptomatic SCM, and to assess the early and late risks of this event in a larger cohort of P-SCCC subjects. A group of 199 patients (94 women, 105 men, median age 51 years) with magnetic resonance signs of spondylotic cervical cord compression, but without clear clinical signs of myelopathy, was followed prospectively for at least 2 years (range 2–12 years). Various demographic, clinical, imaging, and electrophysiological parameters were correlated with the time for the development of symptomatic SCM. Clinical evidence of the first signs and symptoms of SCM within the follow-up period was found in 45 patients (22.6%). The 25th percentile time to clinically manifested myelopathy was 48.4 months, and symptomatic SCM developed within 12 months in 16 patients (35.5%). The presence of symptomatic cervical radiculopathy and electrophysiological abnormalities of cervical cord dysfunction detected by somatosensory or motor-evoked potentials were associated with time-to-SCM development and early development (≤12 months) of SCM, while MRI hyperintensity predicted later (>12 months) progression to symptomatic SCM. The multivariate predictive model based on these variables correctly predicted early progression into SCM in 81.4% of the cases. In conclusion, electrophysiological abnormalities of cervical cord dysfunction together with clinical signs of cervical radiculopathy and MRI hyperintensity are useful predictors of early progression into symptomatic SCM in patients with P-SCCC. Electrophysiological evaluation of cervical cord dysfunction in patients with cervical radiculopathy or back pain is valuable. Meticulous follow-up is justified in high-risk P-SCCC cases

    Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers

    No full text
    In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/. The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord

    Generic acquisition protocol for quantitative MRI of the spinal cord

    No full text
    Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, including a lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area computation, multi-echo gradient echo for gray matter cross-sectional area, and magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. In a companion paper from the same authors, the spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine generic protocol are also available in an open-access document that can be found at https://github.com/spine-generic/protocols. The protocol will serve as a starting point for researchers and clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in neuroimaging protocols will be more common. The protocol could be implemented by any trained MR technician or by a researcher/clinician familiar with MRI acquisition
    corecore