32 research outputs found

    Emulsion sheet doublets as interface trackers for the OPERA experiment

    Get PDF
    New methods for efficient and unambiguous interconnection between electronic counters and target units based on nuclear photographic emulsion films have been developed. The application to the OPERA experiment, that aims at detecting oscillations between mu neutrino and tau neutrino in the CNGS neutrino beam, is reported in this paper. In order to reduce background due to latent tracks collected before installation in the detector, on-site large-scale treatments of the emulsions ("refreshing") have been applied. Changeable Sheet (CSd) packages, each made of a doublet of emulsion films, have been designed, assembled and coupled to the OPERA target units ("ECC bricks"). A device has been built to print X-ray spots for accurate interconnection both within the CSd and between the CSd and the related ECC brick. Sample emulsion films have been extensively scanned with state-of-the-art automated optical microscopes. Efficient track-matching and powerful background rejection have been achieved in tests with electronically tagged penetrating muons. Further improvement of in-doublet film alignment was obtained by matching the pattern of low-energy electron tracks. The commissioning of the overall OPERA alignment procedure is in progress.Comment: 19 pages, 19 figure

    Measurement of the atmospheric muon charge ratio with the OPERA detector

    Get PDF
    The OPERA detector at the Gran Sasso underground laboratory (LNGS) was used to measure the atmospheric muon charge ratio in the TeV energy region. We analyzed 403069 atmospheric muons corresponding to 113.4 days of livetime during the 2008 CNGS run. We computed separately the muon charge ratio for single and for multiple muon events in order to select different energy regions of the primary cosmic ray spectrum and to test the charge ratio dependence on the primary composition. The measured charge ratio values were corrected taking into account the charge-misidentification errors. Data have also been grouped in five bins of the "vertical surface energy". A fit to a simplified model of muon production in the atmosphere allowed the determination of the pion and kaon charge ratios weighted by the cosmic ray energy spectrum.Comment: 14 pages, 10 figure

    First events from the CNGS neutrino beam detected in the OPERA experiment

    Get PDF
    The OPERA neutrino detector at the underground Gran Sasso Laboratory (LNGS) was designed to perform the first detection of neutrino oscillations in appearance mode, through the study of nu_mu to nu_tau oscillations. The apparatus consists of a lead/emulsion-film target complemented by electronic detectors. It is placed in the high-energy, long-baseline CERN to LNGS beam (CNGS) 730 km away from the neutrino source. In August 2006 a first run with CNGS neutrinos was successfully conducted. A first sample of neutrino events was collected, statistically consistent with the integrated beam intensity. After a brief description of the beam and of the various sub-detectors, we report on the achievement of this milestone, presenting the first data and some analysis results.Comment: Submitted to the New Journal of Physic

    The detection of neutrino interactions in the emulsion/lead target of the OPERA experiment

    Full text link
    The OPERA neutrino detector in the underground Gran Sasso Laboratory (LNGS) was designed to perform the first detection of neutrino oscillations in appearance mode through the study of νμντ\nu_\mu\to\nu_\tau oscillations. The apparatus consists of an emulsion/lead target complemented by electronic detectors and it is placed in the high energy long-baseline CERN to LNGS beam (CNGS) 730 km away from the neutrino source. Runs with CNGS neutrinos were successfully carried out in 2007 and 2008 with the detector fully operational with its related facilities for the emulsion handling and analysis. After a brief description of the beam and of the experimental setup we report on the collection, reconstruction and analysis procedures of first samples of neutrino interaction events

    Clinical Usefulness of Multiplex PCR Lateral Flow in MRSA Detection: A Novel, Rapid Genetic Testing Method

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) with exogenous cassette DNA containing the methicillin-resistant gene mecA (SCCmec) poses a problem as a drug-resistant bacterium responsible for hospital- and community-acquired infections. The frequency of MRSA detection has recently been increasing rapidly in Japan, and SCCmec has also been classified more diversely into types I–V. A rapid test is essential for early diagnosis and treatment of MRSA infections, but detection by conventional methods requires at least two days. The newly developed multiplex PCR lateral flow method allows specific amplification of femA to detect S. aureus, mecA to detect SCCmec, and kdpC to detect SCCmec type II; moreover, PCR products can be evaluated visually in about 3 h. In the present study, we developed a PCR lateral flow method for MRSA using this method and investigated its clinical usefulness in the detection of MRSA. The results showed a diagnostic concordance rate of 91.7% for MRSA and methicillin-susceptible S. aureus between bacteriological examination and PCR lateral flow, and a high level of specificity in PCR lateral flow. In addition, a higher detection rate for S. aureus using the same sample was observed for PCR lateral flow (70.2%) than for bacteriological tests (48.6%). The above results show that PCR lateral flow for MRSA detection has high sensitivity, specificity, and speed, and its clinical application as a method for early diagnosis of MRSA infections appears to be feasible

    Hyperactive S6K1 Mediates Oxidative Stress and Endothelial Dysfunction in Aging: Inhibition by Resveratrol

    Get PDF
    Mammalian target of rapamycin (mTOR)/S6K1 signalling emerges as a critical regulator of aging. Yet, a role of mTOR/S6K1 in aging-associated vascular endothelial dysfunction remains unknown. In this study, we investigated the role of S6K1 in aging-associated endothelial dysfunction and effects of the polyphenol resveratrol on S6K1 in aging endothelial cells. We show here that senescent endothelial cells displayed higher S6K1 activity, increased superoxide production and decreased bioactive nitric oxide (NO) levels than young endothelial cells, which is contributed by eNOS uncoupling. Silencing S6K1 in senescent cells reduced superoxide generation and enhanced NO production. Conversely, over-expression of a constitutively active S6K1 mutant in young endothelial cells mimicked endothelial dysfunction of the senescent cells through eNOS uncoupling and induced premature cellular senescence. Like the mTOR/S6K1 inhibitor rapamycin, resveratrol inhibited S6K1 signalling, resulting in decreased superoxide generation and enhanced NO levels in the senescent cells. Consistent with the data from cultured cells, an enhanced S6K1 activity, increased superoxide generation, and decreased bioactive NO levels associated with eNOS uncoupling were also detected in aortas of old WKY rats (aged 20–24 months) as compared to the young animals (1–3 months). Treatment of aortas of old rats with resveratrol or rapamycin inhibited S6K1 activity, oxidative stress, and improved endothelial NO production. Our data demonstrate a causal role of the hyperactive S6K1 in eNOS uncoupling leading to endothelial dysfunction and vascular aging. Resveratrol improves endothelial function in aging, at least in part, through inhibition of S6K1. Targeting S6K1 may thus represent a novel therapeutic approach for aging-associated vascular disease

    Study of the effects induced by lead on the emulsion films of the OPERA experiment

    Get PDF
    The OPERA neutrino oscillation experiment is based on the use of the Emulsion Cloud Chamber (ECC). In the OPERA ECC, nuclear emulsion films acting as very high precision tracking detectors are interleaved with lead plates providing a massive target for neutrino interactions. We report on studies related to the effects occurring from the contact between emulsion and lead. A low radioactivity lead is required in order to minimize the number of background tracks in emulsions and to achieve the required performance in the reconstruction of neutrino events. It was observed that adding other chemical elements to the lead, in order to improve the mechanical properties, may significantly increase the level of radioactivity on the emulsions. A detailed study was made in order to choose a lead alloy with good mechanical properties and an appropriate packing technique so as to have a low enough effective radioactivity.Comment: 19 pages, 11 figure

    Observation of a first ντ\nu_\tau candidate in the OPERA experiment in the CNGS beam

    Get PDF
    The OPERA neutrino detector in the underground Gran Sasso Laboratory (LNGS) has been designed to perform the first detection of neutrino oscillations in direct appearance mode through the study of the νμντ\nu_\mu\rightarrow\nu_\tau channel. The hybrid apparatus consists of an emulsion/lead target complemented by electronic detectors and it is placed in the high energy long-baseline CERN to LNGS beam (CNGS) 730 km away from the neutrino source. Runs with CNGS neutrinos were successfully carried out in 2008 and 2009. After a brief description of the beam, the experimental setup and the procedures used for the analysis of the neutrino events, we describe the topology and kinematics of a first candidate ντ\nu_\tau charged-current event satisfying the kinematical selection criteria. The background calculations and their cross-check are explained in detail and the significance of the event is assessed.Comment: 19 pages, 3 figure
    corecore