1,016 research outputs found
Cooling curves for neutron stars with hadronic matter and quark matter
The thermal evolution of isothermal neutron stars is studied with matter both
in the hadronic phase as well as in the mixed phase of hadronic matter and
strange quark matter. In our models, the dominant early-stage cooling process
is neutrino emission via the direct Urca process. As a consequence, the cooling
curves fall too fast compared to observations. However, when superfluidity is
included, the cooling of the neutron stars is significantly slowed down.
Furthermore, we find that the cooling curves are not very sensitive to the
precise details of the mixing between the hadronic phase and the quark phase
and also of the pairing that leads to superfluidity.Comment: 19 pages, 25 figure
Collimated, single-pass atom source from a pulsed alkali metal dispenser for laser-cooling experiments
We have developed an improved scheme for loading atoms into a magneto-optical
trap (MOT) from a directed alkali metal dispenser in < 10^-10 torr ultra-high
vacuum conditions. A current-driven dispenser was surrounded with a cold
absorbing "shroud" held at < 0 C, pumping rubidium atoms not directed into the
MOT. This nearly eliminates background alkali atoms and reduces the detrimental
rise in pressure normally associated with these devices. The system can be
well-described as a current-controlled, rapidly-switched, two-temperature
thermal beam, and was used to load a MOT with 3 x 10^8 atoms.Comment: 5 pages, 4 figure
Cavity Nonlinear Optics at Low Photon Numbers from Collective Atomic Motion
We report on Kerr nonlinearity and dispersive optical bistability of a
Fabry-Perot optical resonator due to the displacement of ultracold atoms
trapped within. In the driven resonator, such collective motion is induced by
optical forces acting upon up to Rb atoms prepared in the lowest
band of a one-dimensional intracavity optical lattice. The longevity of atomic
motional coherence allows for strongly nonlinear optics at extremely low cavity
photon numbers, as demonstrated by the observation of both branches of optical
bistability at photon numbers below unity.Comment: 4 pages, 3 figures. Modifed following reviewer comment
Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system
The water temperature in the drinking water distribution system and at the customers’ taps approaches the surrounding soil temperature at ca. 1 meter depth. Water temperature is an important determinant of water quality, since it influences physical, chemical and biological processes, such as absorption of chemicals, microbial growth and chlorine decay. In the Netherlands drinking water is distributed without additional residual disinfectant and the temperature of drinking water at the customers’ tap is not allowed to exceed 25 ºC. Routine water quality samples at the tap in urban areas have shown locations with relatively high soil temperatures compared to the expected modelled soil temperatures, which indicate so called ‘underground hot-spots’. In the last decades, the urban sub-surface is getting more occupied with various types of sub-surface infrastructures and some of these can be heat sources. A few recent studies tackle the anthropogenic sources and their influence on the underground, at coarse spatial scales. Little is known about the urban shallow underground heat profile on small spatial scales, of the order of 10 m × 10 m. Our research focuses on developing a method to identify and to localise potential underground hot-spots at −1.0 m at a small spatial scale. In this article we describe a method to find anthropogenic heat sources that influence temperature in the drinking water distribution system through a combination of mapping urban anthropogenic heat sources, modelling the soil temperature and extensive measurements in Rotterdam
Early cold stress responses in post-meiotic anthers from tolerant and sensitive rice cultivars
Background: Rice grain production is susceptible to a changing environment that imposes both biotic and abiotic stress conditions. Cold episodes are becoming more frequent in the last years and directly affect rice yield in areas with a temperate climate. Rice is particularly susceptible to cold stress during the reproductive phase, especially in anthers during post-meiotic stages which, in turn, affect pollen production. However, a number of rice cultivars with a certain degree of tolerance to cold have been described, which may represent a good breeding resource for improvement of susceptible commercial varieties. Plants experiencing cold stress activate a molecular response in order to reprogram many metabolic pathways to face these hostile conditions. Results: Here we performed RNA-seq analysis using cold-stressed post-meiotic anther samples from a cold-tolerant, Erythroceros Hokkaido (ERY), and a cold-susceptible commercial cultivar Sant’Andrea (S.AND). Both cultivars displayed an early common molecular response to cold, although the changes in expression levels are much more drastic in the tolerant one. Comparing our datasets, obtained after one-night cold stress, with other similar genome-wide studies showed very few common deregulated genes, suggesting that molecular responses in coldstressed anthers strongly depend on conditions and the duration of the cold treatments. Cold-tolerant ERY exhibits specific molecular responses related to ethylene metabolism, which appears to be activated after cold stress. On the other hand, S.AND cold-treated plants showed a general downregulation of photosystem I and II genes, supporting a role of photosynthesis and chloroplasts in cold responses in anthers, which has remained elusive. Conclusions: Our study revealed that a number of ethylene-related transcription factors, as putative master regulators of cold responses, were upregulated in ERY providing promising candidates to confer tolerance to susceptible cultivars. Our results also suggest that the photosynthesis machinery might be a good target to improve cold tolerance in anthers. In summary, our study provides valuable candidates for further analysis and molecular breeding for cold-tolerant rice cultivars.Fil: Gonzalez Schain, Nahuel Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Roig Villanova, Irma. Università degli Studi di Milano; ItaliaFil: Kater, Martin M.. Università degli Studi di Milano; Itali
Gynoecium size and ovule number are interconnected traits that impact seed yield
Angiosperms form the biggest group of land plants and display an astonishing diversity of floral structures. The development of the flowers greatly contributed to the evolutionary success of the angiosperms as they guarantee efficient reproduction with the help of either biotic or abiotic vectors. The female reproductive part of the flower is the gynoecium (also called pistil). Ovules arise from meristematic tissue within the gynoecium. Upon fertilization, these ovules develop into seeds while the gynoecium turns into a fruit. Gene regulatory networks involving transcription factors and hormonal communication regulate ovule primordium initiation, their spacing on the placenta, and ovule development. Ovule number and gynoecium size are usually correlated and several genetic factors that impact these traits have been identified. Understanding and fine-tuning the gene regulatory networks influencing ovule number and pistil length opens up strategies for crop yield improvement, which is pivotal in light of a rapidly growing world population. In this review, we present an overview of the current knowledge of the genes and hormones involved in determining ovule number and gynoecium size. We propose a model for the gene regulatory network that guides the developmental processes that determine seed yield
Reversible male sterility in eggplant
SummarySince decades, plant male sterility is considered a powerful tool for biological containment to minimize unwanted self‐pollination for hybrid seed production. Furthermore, prevention of pollen dispersal also answers to concerns regarding transgene flow via pollen from Genetically Modified (GM) crops to traditional crop fields or wild relatives. We induced male sterility by suppressing endogenous general transcription factor genes, TAFs, using anther‐specific promoters combined with artificial microRNA (amiRNA) technology (Schwab et al., 2006). The system was made reversible by the ethanol inducible expression of an amiRNA‐insensitive form of the target gene. We provide proof of concept in eggplant, a cultivated crop belonging to the Solanaceae family that includes many important food crops. The transgenic eggplants that we generated are completely male sterile and fertility can be fully restored by short treatments with ethanol, confirming the efficiency but also the reliability of the system in view of open field cultivation. By combining this system with induced parthenocarpy (Rotino et al., 1997), we provide a novel example of complete transgene containment in eggplant, which enables biological mitigation measures for the benefit of coexistence or biosafety purposes for GM crop cultivation
- …