8 research outputs found

    Synthesis and in silico study of 2-furyl(4-{4-[(substituted)sulfonyl]benzyl}-1-piperazinyl)methanone derivatives as suitable therapeutic agents

    Get PDF
    Abstract In the study presented here, a new series of 2-furyl(4-{4-[(substituted)sulfonyl]benzyl}-1-piperazinyl)methanone derivatives was targeted. The synthesis was initiated by the treatment of different secondary amines (1a-h) with 4-bromomethylbenzenesulfonyl chloride (2) to obtain various 1-{[4-(bromomethyl)phenyl]sulfonyl}amines (3a-h). 2-Furyl(1-piperazinyl)methanone (2-furoyl-1-piperazine; 4) was then dissolved in acetonitrile, with the addition of K2CO3, and the mixture was refluxed for activation. This activated molecule was further treated with equi-molar amounts of 3a-h to form targeted 2-furyl(4-{4-[(substituted)sulfonyl]benzyl}-1-piperazinyl)methanone derivatives (5a-h) in the same reaction set up. The structure confirmation of all the synthesized compounds was carried out by EI-MS, IR and 1H-NMR spectral analysis. The compounds showed good enzyme inhibitory activity. Compound 5h showed excellent inhibitory effect against acetyl- and butyrylcholinesterase with respective IC50 values of 2.91±0.001 and 4.35±0.004 μM, compared to eserine, a reference standard with IC50 values of 0.04±0.0001 and 0.85±0.001 μM, respectively, against these enzymes. All synthesized molecules were active against almost all Gram-positive and Gram-negative bacterial strains tested. The cytotoxicity of the molecules was also checked to determine their utility as possible therapeutic agents

    Synthesis of some novel enzyme inhibitors and antibacterial agents derived from 5-(1-(4-tosyl)piperidin-4-yl)-1,3,4-oxadiazol-2-thiol

    Get PDF
    ABSTRACT Keeping in mind the pharmacological importance of the 1,3,4-oxadiazole moiety, a series of new S-substituted derivatives, 5a-h, of 5-(1-(4-tosyl)piperidin-4-yl)-1,3,4-oxadiazol-2-thiol (3) were synthesized. The reaction of p-toluenesulfonyl chloride (a) and ethyl isonipecotate (b) produced ethyl 1-(4-tosyl)piperidin-4-carboxylate (1) which was further transformed into 1-(4-tosyl)piperidin-4-carbohydrazide (2) by hydrazine hydrate in methanol. Compound 2 was refluxed with CS2 in the presence of KOH to synthesize 5-(1-(4-tosyl)piperidin-4-yl)-1,3,4-oxadiazol-2-thiol (3). The desired compounds, 5a-h, were synthesized by stirring 3 with aralkyl halides, 4a-h, in DMF using NaH as an activator. The structures of synthesized compounds were elucidated by 1H-NMR, IR and EI-MS spectral studies. These compounds were further evaluated for enzyme inhibitory activity against lipoxygenase and alpha-glucosidase, along with antibacterial activity against Gram-negative and Gram-positive bacteria

    Synthesis, spectral analysis and pharmacological study of N'- substituted-2-(5-((2,4-dimethylphenoxy)methyl)-1,3,4-oxadiazol-2-ylthio)acetohydrazides

    Get PDF
    ABSTRACT A series of molecules bearing multiple functional groups were synthesized to study their antibiotic effect against Gram-positive and Gram-negative bacteria and lipoxygenase activity as well. 2,4-Dimethylcarbolic acid (1) was refluxed with ethyl 2-bromoacetate to synthesize ethyl 2-(2,4-dimethylphenoxy)acetate (2). Compound 2 was converted to the corresponding hydrazide 3, again on refluxing with hydrazine. The compound 5-((2,4-dimethylphenoxy)methyl)-1,3,4-oxadiazol-2-thiol (4) was synthesized by the reaction of 3 and CS2 in the presence of KOH. Compound 4 was further converted to the corresponding ester 5 and then 2-(5-((2,4-dimethylphenoxy)methyl)-1,3,4-oxadiazol-2-ylthio)acetohydrazide (6). The final molecules N'-substituted-2-(5-((2,4-dimethylphenoxy)methyl)-1,3,4-oxadiazol-2-ylthio)acetohydrazide, 8a-m, bearing ether, 1,3,4-oxadiazole, thioether, hydrazone and azomethine functional groups were synthesized by stirring the aryl carboxaldehydes 7a-m with 6 in methanol at room temperature. The depicted structures of all synthesized molecules were corroborated by IR, 1H-NMR and EIMS spectral data analysis. 8m and 8i showed substantial antibacterial activity and lipoxygenase inhibitory activity, respectively

    Convergent synthesis of new N -substituted 2-{[5-(1H -indol-3-ylmethyl)-1,3,4-oxadiazol-2-yl]sulfanyl}acetamides as suitable therapeutic agents

    Get PDF
    abstract A series of N-substituted 2-{[5-(1H-indol-3-ylmethyl)-1,3,4-oxadiazol-2-yl]sulfanyl}acetamides (8a-w) was synthesized in three steps. The first step involved the sequential conversion of 2-(1H-indol-3-yl)acetic acid (1) to ester (2) followed by hydrazide (3) formation and finally cyclization in the presence of CS2 and alcoholic KOH yielded 5-(1H-indole-3-yl-methyl)-1,3,4-oxadiazole-2-thiol (4). In the second step, aryl/aralkyl amines (5a-w) were reacted with 2-bromoacetyl bromide (6) in basic medium to yield 2-bromo-N-substituted acetamides (7a-w). In the third step, these electrophiles (7a-w) were reacted with 4 to afford the target compounds (8a-w). Structural elucidation of all the synthesized derivatives was done by 1H-NMR, IR and EI-MS spectral techniques. Moreover, they were screened for antibacterial and hemolytic activity. Enzyme inhibition activity was well supported by molecular docking results, for example, compound 8q exhibited better inhibitory potential against α-glucosidase, while 8g and 8b exhibited comparatively better inhibition against butyrylcholinesterase and lipoxygenase, respectively. Similarly, compounds 8b and 8c showed very good antibacterial activity against Salmonella typhi, which was very close to that of ciprofloxacin, a standard antibiotic used in this study. 8c and 8l also showed very good antibacterial activity against Staphylococcus aureus as well. Almost all compounds showed very slight hemolytic activity, where 8p exhibited the least. Therefore, the molecules synthesized may have utility as suitable therapeutic agents
    corecore