25 research outputs found

    Phosphoproteomic differences in major depressive disorder postmortem brains indicate effects on synaptic function

    Get PDF
    There is still a lack in the molecular comprehension of major depressive disorder (MDD) although this condition affects approximately 10% of the world population. Protein phosphorylation is a posttranslational modification that regulates approximately one-third of the human proteins involved in a range of cellular and biological processes such as cellular signaling. Whereas phosphoproteome studies have been carried out extensively in cancer research, few such investigations have been carried out in studies of psychiatric disorders. Here, we present a comparative phosphoproteome analysis of postmortem dorsolateral prefrontal cortex tissues from 24 MDD patients and 12 control donors. Tissue extracts were analyzed using liquid chromatography mass spectrometry in a data-independent manner (LC-MSE). Our analyses resulted in the identification of 5,195 phosphopeptides, corresponding to 802 non-redundant proteins. Ninety of these proteins showed differential levels of phosphorylation in tissues from MDD subjects compared to controls, being 20 differentially phosphorylated in at least 2 peptides. The majority of these phosphorylated proteins were associated with synaptic transmission and cellular architecture not only pointing out potential biomarker candidates but mainly shedding light to the comprehension of MDD pathobiology

    Brain responses to chronic social defeat stress: effects on regional oxidative metabolism as a function of a hedonic trait, and gene expression in susceptible and resilient rats.

    No full text
    Chronic social defeat stress, a depression model in rats, reduced struggling in the forced swimming test dependent on a hedonic trait-stressed rats with high sucrose intake struggled less. Social defeat reduced brain regional energy metabolism, and this effect was also more pronounced in rats with high sucrose intake. A number of changes in gene expression were identified after social defeat stress, most notably the down-regulation of Gsk3b and Map1b. The majority of differences were between stress-susceptible and resilient rats. Conclusively, correlates of inter-individual differences in stress resilience can be identified both at gene expression and oxidative metabolism levels

    Genome-wide DNA methylation analysis of aggressive behaviour: a longitudinal population-based study

    No full text
    BackgroundHuman aggression is influenced by an interplay between genetic predisposition and experience across the life span. This interaction is thought to occur through epigenetic mechanisms, inducing differential gene expression, thereby moderating neuronal cell and circuit function, and thus shaping aggressive behaviour. MethodsGenome-wide DNA methylation (DNAm) levels were measured in peripheral blood obtained from 95 individuals participating in the Estonian Children Personality Behaviours and Health Study (ECPBHS) at 15 and 25 years of age. We examined the association between aggressive behaviour, as measured by Life History of Aggression (LHA) total score and DNAm levels both assessed at age 25. We further examined the pleiotropic effect of genetic variants regulating LHA-associated differentially methylated positions (DMPs) and multiple traits related to aggressive behaviours. Lastly, we tested whether the DNA methylomic loci identified in association with LHA at age 25 were also present at age 15. ResultsWe found one differentially methylated position (DMP) (cg17815886; p = 1.12 x 10(-8)) and five differentially methylated regions (DMRs) associated with LHA after multiple testing adjustments. The DMP annotated to the PDLIM5 gene, and DMRs resided in the vicinity of four protein-encoding genes (TRIM10, GTF2H4, SLC45A4, B3GALT4) and a long intergenic non-coding RNA (LINC02068). We observed evidence for the colocalization of genetic variants associated with top DMPs and general cognitive function, educational attainment and cholesterol levels. Notably, a subset of the DMPs associated with LHA at age 25 also displayed altered DNAm patterns at age 15 with high accuracy in predicting aggression. ConclusionsOur findings highlight the potential role of DNAm in the development of aggressive behaviours. We observed pleiotropic genetic variants associated with identified DMPs, and various traits previously established to be relevant in shaping aggression in humans. The concordance of DNAm signatures in adolescents and young adults may have predictive value for inappropriate and maladaptive aggression later in life
    corecore