186 research outputs found

    Organelle Interplay - Peroxisome Interactions in Health and Disease

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Peroxisomes are multifunctional, dynamic, membrane‐bound organelles with important functions in cellular lipid metabolism, rendering them essential for human health and development. Important roles for peroxisomes in signaling and the fine‐tuning of cellular processes are emerging, which integrate them in a complex network of interacting cellular compartments. Like many other organelles, peroxisomes communicate through membrane contact sites. For example, peroxisomal growth, positioning, and lipid metabolism involves contacts with the endoplasmic reticulum (ER). Here, we discuss the most recent findings on peroxisome‐organelle interactions including peroxisome‐ER interplay at membrane contacts sites, and functional interplay with mitochondria, lysosomes, and lipid droplets in mammalian cells. We address tether proteins, metabolic cooperation, and the impact of peroxisome interactions on human health and disease.Biotechnology & Biological Sciences Research Council (BBSRC)Medical Research Council (MRC)University of ExeterGerman Research FoundationUniversity of Heidelber

    High Resolution Hybrid Pixel Sensors for the e+e- TESLA Linear Collider Vertex Tracker

    Get PDF
    In order to fully exploit the physics potential of a future high energy e+e- linear collider, a Vertex Tracker, providing high resolution track reconstruction, is required. Hybrid Silicon pixel sensors are an attractive option, for the sensor technology, due to their read-out speed and radiation hardness, favoured in the high rate environment of the TESLA e+e- linear collider design but have been so far limited by the achievable single point space resolution. In this paper, a conceptual design of the TESLA Vertex Tracker, based on a novel layout of hybrid pixel sensors with interleaved cells to improve their spatial resolution, is presented.Comment: 12 pages, 5 figures, to appear in the Proceedings of the Vertex99 Workshop, Texel (The Netherlands), June 199

    Evaluation of measurement accuracies of the Higgs boson branching fractions in the International Linear Collider

    Get PDF
    Precise measurement of Higgs boson couplings is an important task for International Linear Collider (ILC) experiments and will facilitate the understanding of the particle mass generation mechanism. In this study, the measurement accuracies of the Higgs boson branching fractions to the bb and cc quarks and gluons, ΔBr(Hbbˉ,ccˉ,gg)/Br\Delta Br(H\to b\bar{b},\sim c\bar{c},\sim gg)/Br, were evaluated with the full International Large Detector model (\texttt{ILD\_00}) for the Higgs mass of 120 GeV at the center-of-mass (CM) energies of 250 and 350 GeV using neutrino, hadronic and leptonic channels and assuming an integrated luminosity of 250fb1250 {\rm fb^{-1}}, and an electron (positron) beam polarization of -80% (+30%). We obtained the following measurement accuracies of the Higgs cross section times branching fraction (Δ(σBr)/σBr\Delta (\sigma \cdot Br)/\sigma \cdot Br) for decay of the Higgs into bbˉb\bar{b}, ccˉc\bar{c}, and gggg; as 1.0%, 6.9%, and 8.5% at a CM energy of 250 GeV and 1.0%, 6.2%, and 7.3% at 350 GeV, respectively. After the measurement accuracy of the cross section (Δσ/σ\Delta\sigma/\sigma) was corrected using the results of studies at 250 GeV and their extrapolation to 350 GeV, the derived measurement accuracies of the branching fractions (ΔBr/Br\Delta Br/Br) to bbˉb\bar{b}, ccˉc\bar{c}, and gg were 2.7%, 7.3%, and 8.9% at a CM energy of 250 GeV and 3.6%, 7.2%, and 8.1% at 350 GeV, respectively.Comment: 15 pages, 6 figure

    Theoretical Higgs Mass Bounds in the Standard Model and Supersymmetric Extensions

    Get PDF
    These lectures provide a very basic introduction to different theoretical limits on the mass of Higgs scalars. Particular attention is devoted to the pure Standard Model and its Minimal Supersymmetric extension (MSSM). [Lectures presented at the XXIV ITEP Winter School, Snegiri (Russia), February 96]Comment: 37 pages, TeX, 15 postscript figures include

    BPS Monopole Equation in Omega-background

    Full text link
    We study deformed supersymmetries in N=2 super Yang-Mills theory in the Omega-backgrounds characterized by two complex parameters ϵ1,ϵ2\epsilon_1, \epsilon_2. When one of the ϵ\epsilon-parameters vanishes, the theory has extended supersymmetries. We compute the central charge of the algebra and obtain the deformed BPS monopole equation. We examine supersymmetries preserved by the equation.Comment: 14 pages, typos corrected, published version in JHE

    Insights into the peroxisomal protein inventory of zebrafish

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordData availability statement: All datasets generated for this study are included in the article/Supplementary Material.Peroxisomes are ubiquitous, oxidative subcellular organelles with important functions in cellular lipid metabolism and redox homeostasis. Loss of peroxisomal functions causes severe disorders with developmental and neurological abnormalities. Zebrafish are emerging as an attractive vertebrate model to study peroxisomal disorders as well as cellular lipid metabolism. Here, we combined bioinformatics analyses with molecular cell biology and reveal the first comprehensive inventory of D. rerio peroxisomal proteins, which we systematically compared with those of human peroxisomes. Through bioinformatics analysis of all PTS1-carrying proteins, we demonstrate that D.rerio lacks two well-known mammalian peroxisomal proteins (BAAT & ZADH2/PTGR3), but possesses a putative peroxisomal malate synthase (Mlsl) and verified differences in the presence of purine degrading enzymes. Furthermore, we revealed novel candidate peroxisomal proteins in D. rerio, whose function and localisation is discussed. Our findings confirm the suitability of zebrafish as a vertebrate model for peroxisome research and open possibilities for the study of novel peroxisomal candidate proteins in zebrafish and humans.Biotechnology & Biological Sciences Research Council (BBSRC)European Union Horizon 2020Deutsche Forschungsgemeinschaft (DFG

    Probing Noncommutative Space-Time in the Laboratory Frame

    Get PDF
    The phenomenological investigation of noncommutative space-time in the laboratory frame are presented. We formulate the apparent time variation of noncommutativity parameter θμν\theta_{\mu\nu} in the laboratory frame due to the earth's rotation. Furthermore, in the noncommutative QED, we discuss how to probe the electric-like component θE=(θ01,θ02,θ03)\overrightarrow{\theta_{E}}=(\theta_{01},\theta_{02},\theta_{03}) by the process ee+γγe^-e^+\to\gamma\gamma at future ee+e^-e^+ linear collider. We may determine the magnitude and the direction of θE\overrightarrow{\theta_{E}} by detailed study of the apparent time variation of total cross section. In case of us observing no signal, the upper limit on the magnitude of θE\overrightarrow{\theta_E^{}} can be determined independently of its direction.Comment: 12 pages, 7 figures, typos are corrected, one graph have been added in figure

    Neutrino-electron scattering in noncommutative space

    Full text link
    Neutral particles can couple with the U(1)U(1) gauge field in the adjoint representation at the tree level if the space-time coordinates are noncommutative (NC). Considering neutrino-photon coupling in the NC QED framework, we obtain the differential cross section of neutrino-electron scattering. Similar to the magnetic moment effect, one of the NC terms is proportional to 1T\frac 1 T, where TT is the electron recoil energy. Therefore, this scattering provides a chance to achieve a stringent bound on the NC scale in low energy by improving the sensitivity to the smaller electron recoil energy.Comment: 12 pages, 2 figure

    TeV Scale Implications of Non Commutative Space time in Laboratory Frame with Polarized Beams

    Full text link
    We analyze e+eγγe^{+}e^{-}\rightarrow \gamma\gamma, eγeγe^{-}\gamma \rightarrow e^{-}\gamma and γγe+e\gamma\gamma \rightarrow e^{+}e^{-} processes within the Seiberg-Witten expanded noncommutative scenario using polarized beams. With unpolarized beams the leading order effects of non commutativity starts from second order in non commutative(NC) parameter i.e. O(Θ2)O(\Theta^2), while with polarized beams these corrections appear at first order (O(Θ)O(\Theta)) in cross section. The corrections in Compton case can probe the magnetic component(ΘB\vec{\Theta}_B) while in Pair production and Pair annihilation probe the electric component(ΘE\vec{\Theta}_E) of NC parameter. We include the effects of earth rotation in our analysis. This study is done by investigating the effects of non commutativity on different time averaged cross section observables. The results which also depends on the position of the collider, can provide clear and distinct signatures of the model testable at the International Linear Collider(ILC).Comment: 22 pages, 19 figures, new comments and references added, few typos corrected, Published in JHE
    corecore