52 research outputs found

    Effects of acetylsalicylic acid on adiposity in a mouse model of diet-induced obesity

    Get PDF
    Obesity is a growing public health problem and its prevalence has reached epidemic proportions in recent decades [1]. Several studies have demonstrated that obesity modifies the metabolic and endocrine functions of adipose tissue and is closely associated with chronic, low grade inflammation [2]. Because inflammation was proposed to be involved in the pathophysiology of obesity [1,2], we decided to evaluate the effects of the antinflammatory drug acetylsalicylic acid (ASA) in a mouse model of diet-induced obesity. We performed the experiments using C57BL/6J female mice fed for three months with Standard Diet (SD) or with High Fat Diet (HFD). At the end of three months, mice fed with HFD were separated in four groups and fed for other two months as follows: one group continued with HFD, one group returned to SD, one group continued with HFD with the addition of 30mg/kg of ASA and, finally, the last group returned to SD with the addition of 30mg/kg of ASA. ASA was administered in the drinking water. The metabolic and inflammatory status was evaluated by histological, molecular and biochemical analysis in all mice. As expected, HFD induced an increase in body weight and insulin resistance with a consequent reduction of glucose tolerance. Measurement of adipocyte size revealed that ASA significantly reduced HFD-induced adipocyte hypertrophy and it was able to revert insulin resistance with amelioration of glucose tolerance. Moreover, gene expression profiles of pro- and anti-inflammatory cytokines as well as the expression of macrophage and lymphocyte markers showed that HFD led to a significant increase in macrophages accumulation and an increase of inflammatory cytokines. However, we observed a significant trend for reduction of these molecules after treatment with ASA. The level of the anti-inflammatory molecules were also significantly increased after ASA administration. In conclusion, our results suggest that ASA can be proposed as pharmacologic option for reducing adipose tissue inflammation associated with obesity

    Periodic Accumulation of Regulatory T Cells in the Uterus: Preparation for the Implantation of a Semi-Allogeneic Fetus?

    Get PDF
    BACKGROUND: Naturally occurring Foxp3(+)regulatory T cells play an important role in the inhibition of an immunological attack of the fetus. As implantation of the fetus poses an immediate antigenic challenge, the immune system has to prepare itself for this event prior to implantation. METHODOLOGY AND PRINCIPAL FINDINGS: Here, we show using quantitative RT-PCR and flow cytometry that regulatory T cells accumulate in the uterus not only during pregnancy, but also every time the female becomes fertile. Their periodic accumulation is accompanied by matching fluctuations in uterine expression of several chemokines, which have been shown to play a role in the recruitment and retention of regulatory T cells. CONCLUSIONS/SIGNIFICANCE: The data lead us to propose that every time a female approaches estrus, regulatory T cells start to accumulate in the uterus in preparation for a possible implantation event. Once pregnancy is established, those regulatory T cells that have seen alloantigen need to be retained at their site of action. Whilst several chemokines appear to be involved in the recruitment and/or retention of regulatory T cells during estrus, in pregnancy this role appears to be taken over by CCL4

    A correlative and quantitative imaging approach enabling characterization of primary cell-cell communication: Case of human CD4+ T cell-macrophage immunological synapses

    Get PDF
    Cell-to-cell communication engages signaling and spatiotemporal reorganization events driven by highly context-dependent and dynamic intercellular interactions, which are difficult to capture within heterogeneous primary cell cultures. Here, we present a straightforward correlative imaging approach utilizing commonly available instrumentation to sample large numbers of cell-cell interaction events, allowing qualitative and quantitative characterization of rare functioning cell-conjugates based on calcium signals. We applied this approach to examine a previously uncharacterized immunological synapse, investigating autologous human blood CD4+ T cells and monocyte-derived macrophages (MDMs) forming functional conjugates in vitro. Populations of signaling conjugates were visualized, tracked and analyzed by combining live imaging, calcium recording and multivariate statistical analysis. Correlative immunofluorescence was added to quantify endogenous molecular recruitments at the cell-cell junction. By analyzing a large number of rare conjugates, we were able to define calcium signatures associated with different states of CD4+ T cell-MDM interactions. Quantitative image analysis of immunostained conjugates detected the propensity of endogenous T cell surface markers and intracellular organelles to polarize towards cell-cell junctions with high and sustained calcium signaling profiles, hence defining immunological synapses. Overall, we developed a broadly applicable approach enabling detailed single cell- and population-based investigations of rare cell-cell communication events with primary cells

    Interleukin-17-producing decidual CD4+ T cells are not deleterious for human pregnancy when they also produce interleukin-4

    Get PDF
    BACKGROUND: Trophoblast expressing paternal HLA-C antigens resemble a semiallograft, and could be rejected by maternal CD4+ T lymphocytes. We examined the possible role in human pregnancy of Th17 cells, known to be involved in allograft rejection and reported for this reason to be responsible for miscarriages. We also studied Th17/Th1 and Th17/Th2 cells never investigated before. We defined for the first time the role of different Th17 subpopulations at the embryo implantation site and the role of HLA-G5, produced by the trophoblast/embryo, on Th17 cell differentiation. METHODS: Cytokine production by CD4+ purified T cell and T clones from decidua of normal pregnancy, unexplained recurrent abortion, and ectopic pregnancy at both embryo implantation site and distant from that site were analyzed for protein and mRNA production. Antigen-specific T cell lines were derived in the presence and in the absence of HLA-G5. RESULTS: We found an associated spontaneous production of IL-17A, IL-17F and IL-4 along with expression of CD161, CCR8 and CCR4 (Th2- and Th17-type markers) in fresh decidua CD4+ T cells during successful pregnancy. There was a prevalence of Th17/Th2 cells (producing IL-17A, IL-17F, IL-22 and IL-4) in the decidua of successful pregnancy, but the exclusive presence of Th17 (producing IL-17A, IL-17F, IL-22) and Th17/Th1 (producing IL-17A, IL-17F, IL-22 and IFN-γ) cells was found in the decidua of unexplained recurrent abortion. More importantly, we observed that Th17/Th2 cells were exclusively present at the embryo implantation site during tubal ectopic pregnancy, and that IL-4, GATA-3, IL-17A, ROR-C mRNA levels increased in tubal biopsies taken from embryo implantation sites, whereas Th17, Th17/Th1 and Th1 cells are exclusively present apart from implantation sites. Moreover, soluble HLA-G5 mediates the development of Th17/Th2 cells by increasing IL-4, IL-17A and IL-17F protein and mRNA production of CD4+ T helper cells. CONCLUSION: No pathogenic role of decidual Th17 cells during pregnancy was observed. Indeed, a beneficial role for these cells was observed when they also produced IL-4. HLA-G5 could be the key feature of the uterine microenvironment responsible for the development of Th17/Th2 cells, which seem to be crucial for successful embryo implantatio

    B cells and professional APCs recruit regulatory T cells via CCL4

    No full text
    Using gene expression profiling, we show here that activation of B cells and professional antigen-presenting cells (APCs) induces the expression of common chemokines. Among these, CCL4 was the most potent chemoattractant of a CD4+CD25+ T cell population, which is a characteristic phenotype of regulatory T cells. Depletion of either regulatory T cells or CCL4 resulted in a deregulated humoral response, which culminated in the production of autoantibodies. This suggested that the recruitment of regulatory T cells to B cells and APCs by CCL4 plays a central role in the normal initiation of T cell and humoral responses, and failure to do this leads to autoimmune activation

    The CXCR4 mutations in WHIM syndrome impair the stability of the T-cell immunologic synapse.

    No full text
    WHIM (warts, hypogammaglobulinemia, infections, myelokathexis) syndrome is a rare disease characterized by diverse symptoms indicative of aberrantly functioning immunity. It is caused by mutations in the chemokine receptor CXCR4, which impair its intracellular trafficking, leading to increased responsiveness to chemokine ligand and retention of neutrophils in bone marrow. Yet WHIM symptoms related to adaptive immunity, such as delayed IgG switching and impaired memory B-cell function, remain largely unexplained. We hypothesized that the WHIM-associated mutations in CXCR4 may affect the formation of immunologic synapses between T cells and antigen-presenting cells (APCs). We show that, in the presence of competing external chemokine signals, the stability of T-APC conjugates from patients with WHIM-mutant CXCR4 is disrupted as a result of impaired recruitment of the mutant receptor to the immunologic synapse. Using retrogenic mice that develop WHIM-mutant T cells, we show that WHIM-mutant CXCR4 inhibits the formation of long-lasting T-APC interactions in ex vivo lymph node slice time-lapse microscopy. These findings demonstrate that chemokine receptors can affect T-APC synapse stability and allow us to propose a novel mechanism that contributes to the adaptive immune response defects in WHIM patients

    Effect of acetylsalicylic acid on inflamed adipose tissue. Insulin resistance and hepatic steatosis in a mouse model of diet-induced obesity

    No full text
    Aims: Obesity represents a global health problem. Excessive caloric intake promotes the release of inflammatory mediators by hypertrophic adipocytes and obesity-induced inflammation is now recognized as a risk factor for the development of several diseases, such as cardiovascular diseases, insulin resistance, type-II diabetes, liver steatosis and cancer. Since obesity causes inflammation, we tested the ability of acetylsalicylic acid (ASA), a potent anti-inflammatory drug, in counteracting this inflammatory process and in mitigating obesity-associated health complications. Main Methods: Mice were fed with standard (SD) or high fat diet (HFD) for 3 months and then treated with acetylsalicylic acid for the subsequent two months. We then analyzed the metabolic and inflammatory status of their adipose and liver tissue by histological, molecular and biochemical analysis. Key findings: Although ASA did not exert any effect on body weight, quantification of adipocyte size revealed that the drug slightly reduced adipocyte hypertrophy, however not sufficient so as to induce weight loss. Most importantly, ASA was able to improve insulin resistance. Gene expression profiles of pro- and anti-inflammatory cytokines as well as the expression of macrophage and lymphocyte markers revealed that HFD led to a marked macrophage accumulation in the adipose tissue and an increase of several pro-inflammatory cytokines, a situation almost completely reverted after ASA administration. In addition, liver steatosis caused by HFD was completely abrogated by ASA treatment. Significance: ASA can efficiently ameliorate pathological conditions usually associated with obesity by inhibiting the inflammatory process occurring in the adipose tissue
    • …
    corecore