2,608 research outputs found

    First measurement of the magnetic field on FK Com and its relation to the contemporaneous starspot locations

    Full text link
    In this study we present simultaneous low-resolution longitudinal magnetic field measurements and high-resolution spectroscopic observations of the cool single giant FK Com. The variation of the magnetic field over the rotational period of 2.4 days is compared with the starspot location obtained using Doppler imaging techniques, V-band photometry and V-I colours. The chromospheric activity is studied simultaneously with the photospheric activity using high resolution observations of the Halpha, Hbeta and Hgamma line profiles. Both the maximum (272 +/- 24 G) and minimum (60 +/- 17 G) in the mean longitudinal magnetic field, , are detected close to the phases where cool spots appear on the stellar surface. A possible explanation for such a behaviour is that the active regions at the two longitudes separated by 0.2 in phase have opposite polarities.Comment: 10 Pages, 11 figures (quality of Figures 7,8 and 10 reduced), accepted for publication in MNRA

    Multicomponent aerosol dynamics model UHMA: model development and validation

    Get PDF
    A size-segregated aerosol dynamics model UHMA (University of Helsinki Multicomponent Aerosol model) was developed for studies of multicomponent tropospheric aerosol particles. The model includes major aerosol microphysical processes in the atmosphere with a focus on new particle formation and growth; thus it incorporates particle coagulation and multicomponent condensation, applying a revised treatment of condensation flux onto free molecular regime particles and the activation of nanosized clusters by organic vapours (Nano-K&#246;hler theory), as well as recent parameterizations for binary H<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>O and ternary H<sub>2</sub>SO<sub>4</sub>-NH<sub>3</sub>-H<sub>2</sub>O homogeneous nucleation and dry deposition. The representation of particle size distribution can be chosen from three sectional methods: the hybrid method, the moving center method, and the retracking method in which moving sections are retracked to a fixed grid after a certain time interval. All these methods can treat particle emissions and atmospheric transport consistently, and are therefore suitable for use in large scale atmospheric models. In a test simulation against an accurate high resolution solution, all the methods showed reasonable treatment of new particle formation with 20 size sections although the hybrid and the retracking methods suffered from artificial widening of the distribution. The moving center approach, on the other hand, showed extra dents in the particle size distribution and failed to predict the onset of detectable particle formation. In a separate test simulation of an observed nucleation event, the model captured the key qualitative behaviour of the system well. Furthermore, its prediction of the organic volume fraction in newly formed particles, suggesting values as high as 0.5 for 3&ndash;4 nm particles and approximately 0.8 for 10 nm particles, agrees with recent indirect composition measurements

    Investigating magnetic activity in very stable stellar magnetic fields: long-term photometric and spectroscopic study of the fully convective M4 dwarf V374 Peg

    Get PDF
    The ultrafast-rotating (Prot≈0.44dP_\mathrm{rot}\approx0.44 d) fully convective single M4 dwarf V374 Peg is a well-known laboratory for studying intense stellar activity in a stable magnetic topology. As an observable proxy for the stellar magnetic field, we study the stability of the light curve, and thus the spot configuration. We also measure the occurrence rate of flares and coronal mass ejections (CMEs). We analyse spectroscopic observations, BV(RI)CBV(RI)_C photometry covering 5 years, and additional RCR_C photometry that expands the temporal base over 16 years. The light curve suggests an almost rigid-body rotation, and a spot configuration that is stable over about 16 years, confirming the previous indications of a very stable magnetic field. We observed small changes on a nightly timescale, and frequent flaring, including a possible sympathetic flare. The strongest flares seem to be more concentrated around the phase where the light curve indicates a smaller active region. Spectral data suggest a complex CME with falling-back and re-ejected material, with a maximal projected velocity of ≈\approx675km/s. We observed a CME rate much lower than expected from extrapolations of the solar flare-CME relation to active stars.Comment: 15 figures, 4 tables, accepted for publication in A&

    CCN activation and cloud processing in simplified sectional aerosol models with low size resolution

    No full text
    International audienceWe investigate the influence of low size resolution, typical to sectional aerosol models in large scale applications, on cloud droplet activation and cloud processing of aerosol particles. A simplified cloud scheme with five approaches to determine the fraction of activated particles is compared with a detailed reference model under different atmospheric conditions. In general, activation approaches which assume a distribution profile within the critical model size sections predict the cloud droplet concentration most accurately under clean and moderately polluted conditions. In such cases, the deviation from the reference simulations is below 15% except for very low updraft velocities. In highly polluted cases, the concentration of cloud droplets is significantly overestimated due to the inability of the simplified scheme to account for the kinetic limitations of the droplet growth. Of the profiles examined, taking into account the local shape of the particle size distribution is the most accurate although in most cases the shape of the profile has little relevance. While the low resolution cloud model cannot reproduce the details of the out-of-the-cloud aerosol size distribution, it captures well the amount of sulphate produced in aqueous-phase reactions as well as the distribution of the sulphate between the cloud droplets. Overall, the simplified cloud scheme with low size resolution performs well for clean and moderately polluted regions that cover most of the Earth's surface and is therefore suitable for large scale models

    Comparing apples and oranges: assessment of the relative video quality in the presence of different types of distortions

    Get PDF
    <p>Abstract</p> <p>Video quality assessment is essential for the performance analysis of visual communication applications. Objective metrics can be used for estimating the relative quality differences, but they typically give reliable results only if the compared videos contain similar types of quality distortion. However, video compression typically produces different kinds of visual artifacts than transmission errors. In this article, we focus on a novel subjective quality assessment method that is suitable for comparing different types of quality distortions. The proposed method has been used to evaluate how well different objective quality metrics estimate the relative subjective quality levels for content with different types of quality distortions. Our conclusion is that none of the studied objective metrics works reliably for assessing the co-impact of compression artifacts and transmission errors on the subjective quality. Nevertheless, we have observed that the objective metrics' tendency to either over- or underestimate the perceived impact of transmission errors has a high correlation with the spatial and temporal activity levels of the content. Therefore, our results can be useful for improving the performance of objective metrics in the presence of both source and channel distortions.</p

    The EPICS Software Framework Moves from Controls to Physics

    No full text
    The Experimental Physics and Industrial Control System (EPICS), is an open-source software framework for high-performance distributed control, and is at the heart of many of the world’s large accelerators and telescopes. Recently, EPICS has undergone a major revision, with the aim of better computing supporting for the next generation of machines and analytical tools. Many new data types, such as matrices, tables, images, and statistical descriptions, plus users’ own data types, now supplement the simple scalar and waveform types of the former EPICS. New computational architectures for scientific computing have been added for high-performance data processing services and pipelining. Python and Java bindings have enabled powerful new user interfaces. The result has been that controls are now being integrated with modelling and simulation, machine learning, enterprise databases, and experiment DAQs. We introduce this new EPICS (version 7) from the perspective of accelerator physics and review early adoption cases in accelerators around the world

    Planetary eclipse mapping of CoRoT-2a. Evolution, differential rotation, and spot migration

    Full text link
    The lightcurve of CoRoT-2 shows substantial rotational modulation and deformations of the planet's transit profiles caused by starspots. We consistently model the entire lightcurve, including both rotational modulation and transits, stretching over approximately 30 stellar rotations and 79 transits. The spot distribution and its evolution on the noneclipsed and eclipsed surface sections are presented and analyzed, making use of the high resolution achievable under the transit path. We measure the average surface brightness on the eclipsed section to be (5\pm1) % lower than on the noneclipsed section. Adopting a solar spot contrast, the spot coverage on the entire surface reaches up to 19 % and a maximum of almost 40 % on the eclipsed section. Features under the transit path, i.e. close to the equator, rotate with a period close to 4.55 days. Significantly higher rotation periods are found for features on the noneclipsed section indicating a differential rotation of ΔΩ>0.1\Delta \Omega > 0.1. Spotted and unspotted regions in both surface sections concentrate on preferred longitudes separated by roughly 180 deg.Comment: Paper accepted by A&A 17/02/2010. For a better resolution paper please visit my homepage: http://www.hs.uni-hamburg.de/EN/Ins/Per/Huber/index.htm

    Aspiration Level Approach to Interactive Multi-objective Programming and its Applications

    Get PDF
    Several kinds of techniques for multiple criteria decision making have been developed for the last few decades. Above all, the aspiration level approach to multi-objective programming problems is widely recognized to be effective in many practical fields. As a variant of the aspiration level approach, the author developed the satisficing tradeoff method. In addition, he has been applying the method to several kinds of practical problems for these ten years. Some of them were already performed in real life. Typical examples such as feed formulation for live stock, erection management of a cable stayed bridge and bond portfolio selection will be included in this paper
    • …
    corecore