130 research outputs found
The Strahler number of a parity game
The Strahler number of a rooted tree is the largest height of a perfect binary tree that is its minor. The Strahler number of a parity game is proposed to be defined as the smallest Strahler number of the tree of any of its attractor decompositions. It is proved that parity games can be solved in quasi-linear space and in time that is polynomial in the number of vertices~n and linear in (d/2k)k, where d is the number of priorities and k is the Strahler number. This complexity is quasi-polynomial because the Strahler number is at most logarithmic in the number of vertices. The proof is based on a new construction of small Strahler-universal trees.
It is shown that the Strahler number of a parity game is a robust parameter: it coincides with its alternative version based on trees of progress measures and with the register number defined by Lehtinen~(2018). It follows that parity games can be solved in quasi-linear space and in time that is polynomial in the number of vertices and linear in (d/2k)k, where k is the register number. This significantly improves the running times and space achieved for parity games of bounded register number by Lehtinen (2018) and by Parys (2020).
The running time of the algorithm based on small Strahler-universal trees yields a novel trade-off kâ
lg(d/k)=O(logn) between the two natural parameters that measure the structural complexity of a parity game, which allows solving parity games in polynomial time. This includes as special cases the asymptotic settings of those parameters covered by the results of Calude, Jain Khoussainov, Li, and Stephan (2017), of JurdziĆski and LaziÄ (2017), and of Lehtinen (2018), and it significantly extends the range of such settings, for example to d=2O(lgnâ) and k=O(lgnââ)
Two-Player Reachability-Price Games on Single-Clock Timed Automata
We study two player reachability-price games on single-clock timed automata.
The problem is as follows: given a state of the automaton, determine whether
the first player can guarantee reaching one of the designated goal locations.
If a goal location can be reached then we also want to compute the optimum
price of doing so. Our contribution is twofold. First, we develop a theory of
cost functions, which provide a comprehensive methodology for the analysis of
this problem. This theory allows us to establish our second contribution, an
EXPTIME algorithm for computing the optimum reachability price, which improves
the existing 3EXPTIME upper bound.Comment: In Proceedings QAPL 2011, arXiv:1107.074
New Deterministic Algorithms for Solving Parity Games
We study parity games in which one of the two players controls only a small
number of nodes and the other player controls the other nodes of the
game. Our main result is a fixed-parameter algorithm that solves bipartite
parity games in time , and general parity games in
time , where is the number of distinct
priorities and is the number of edges. For all games with this
improves the previously fastest algorithm by Jurdzi{\'n}ski, Paterson, and
Zwick (SICOMP 2008). We also obtain novel kernelization results and an improved
deterministic algorithm for graphs with small average degree
The tropical shadow-vertex algorithm solves mean payoff games in polynomial time on average
We introduce an algorithm which solves mean payoff games in polynomial time
on average, assuming the distribution of the games satisfies a flip invariance
property on the set of actions associated with every state. The algorithm is a
tropical analogue of the shadow-vertex simplex algorithm, which solves mean
payoff games via linear feasibility problems over the tropical semiring
. The key ingredient in our approach is
that the shadow-vertex pivoting rule can be transferred to tropical polyhedra,
and that its computation reduces to optimal assignment problems through
Pl\"ucker relations.Comment: 17 pages, 7 figures, appears in 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part
When is Containment Decidable for Probabilistic Automata?
The containment problem for quantitative automata is the natural quantitative generalisation of the classical language inclusion problem for Boolean automata. We study it for probabilistic automata, where it is known to be undecidable in general. We restrict our study to the class of probabilistic automata with bounded ambiguity. There, we show decidability (subject to Schanuel's conjecture) when one of the automata is assumed to be unambiguous while the other one is allowed to be finitely ambiguous. Furthermore, we show that this is close to the most general decidable fragment of this problem by proving that it is already undecidable if one of the automata is allowed to be linearly ambiguous
Lower Bounds for Structuring Unreliable Radio Networks
In this paper, we study lower bounds for randomized solutions to the maximal
independent set (MIS) and connected dominating set (CDS) problems in the dual
graph model of radio networks---a generalization of the standard graph-based
model that now includes unreliable links controlled by an adversary. We begin
by proving that a natural geographic constraint on the network topology is
required to solve these problems efficiently (i.e., in time polylogarthmic in
the network size). We then prove the importance of the assumption that nodes
are provided advance knowledge of their reliable neighbors (i.e, neighbors
connected by reliable links). Combined, these results answer an open question
by proving that the efficient MIS and CDS algorithms from [Censor-Hillel, PODC
2011] are optimal with respect to their dual graph model assumptions. They also
provide insight into what properties of an unreliable network enable efficient
local computation.Comment: An extended abstract of this work appears in the 2014 proceedings of
the International Symposium on Distributed Computing (DISC
Probabilistic Timed Automata with Clock-Dependent Probabilities
Probabilistic timed automata are classical timed automata extended with
discrete probability distributions over edges. We introduce clock-dependent
probabilistic timed automata, a variant of probabilistic timed automata in
which transition probabilities can depend linearly on clock values.
Clock-dependent probabilistic timed automata allow the modelling of a
continuous relationship between time passage and the likelihood of system
events. We show that the problem of deciding whether the maximum probability of
reaching a certain location is above a threshold is undecidable for
clock-dependent probabilistic timed automata. On the other hand, we show that
the maximum and minimum probability of reaching a certain location in
clock-dependent probabilistic timed automata can be approximated using a
region-graph-based approach.Comment: Full version of a paper published at RP 201
Beeping a Maximal Independent Set
We consider the problem of computing a maximal independent set (MIS) in an
extremely harsh broadcast model that relies only on carrier sensing. The model
consists of an anonymous broadcast network in which nodes have no knowledge
about the topology of the network or even an upper bound on its size.
Furthermore, it is assumed that an adversary chooses at which time slot each
node wakes up. At each time slot a node can either beep, that is, emit a
signal, or be silent. At a particular time slot, beeping nodes receive no
feedback, while silent nodes can only differentiate between none of its
neighbors beeping, or at least one of its neighbors beeping.
We start by proving a lower bound that shows that in this model, it is not
possible to locally converge to an MIS in sub-polynomial time. We then study
four different relaxations of the model which allow us to circumvent the lower
bound and find an MIS in polylogarithmic time. First, we show that if a
polynomial upper bound on the network size is known, it is possible to find an
MIS in O(log^3 n) time. Second, if we assume sleeping nodes are awoken by
neighboring beeps, then we can also find an MIS in O(log^3 n) time. Third, if
in addition to this wakeup assumption we allow sender-side collision detection,
that is, beeping nodes can distinguish whether at least one neighboring node is
beeping concurrently or not, we can find an MIS in O(log^2 n) time. Finally, if
instead we endow nodes with synchronous clocks, it is also possible to find an
MIS in O(log^2 n) time.Comment: arXiv admin note: substantial text overlap with arXiv:1108.192
Ranking and Repulsing Supermartingales for Reachability in Probabilistic Programs
Computing reachability probabilities is a fundamental problem in the analysis
of probabilistic programs. This paper aims at a comprehensive and comparative
account on various martingale-based methods for over- and under-approximating
reachability probabilities. Based on the existing works that stretch across
different communities (formal verification, control theory, etc.), we offer a
unifying account. In particular, we emphasize the role of order-theoretic fixed
points---a classic topic in computer science---in the analysis of probabilistic
programs. This leads us to two new martingale-based techniques, too. We give
rigorous proofs for their soundness and completeness. We also make an
experimental comparison using our implementation of template-based synthesis
algorithms for those martingales
Expressive Equivalence and Succinctness of Parametrized Automata with respect to Finite Memory Automata
International audienceWe compare parametrized automata, a class of automata recently introduced by the authors, against finite memory automata with non-deterministic assignment, an existing class of automata used to model services. We prove that both classes have the same expressive power, while parametrized automata can be exponentially succinct in some cases. We then prove that deciding simulation preorder for parametrized automata is EXPTIME-complete, extending an earlier result showing it in EXPTIME
- âŠ