130 research outputs found

    The Strahler number of a parity game

    Get PDF
    The Strahler number of a rooted tree is the largest height of a perfect binary tree that is its minor. The Strahler number of a parity game is proposed to be defined as the smallest Strahler number of the tree of any of its attractor decompositions. It is proved that parity games can be solved in quasi-linear space and in time that is polynomial in the number of vertices~n and linear in (d/2k)k, where d is the number of priorities and k is the Strahler number. This complexity is quasi-polynomial because the Strahler number is at most logarithmic in the number of vertices. The proof is based on a new construction of small Strahler-universal trees. It is shown that the Strahler number of a parity game is a robust parameter: it coincides with its alternative version based on trees of progress measures and with the register number defined by Lehtinen~(2018). It follows that parity games can be solved in quasi-linear space and in time that is polynomial in the number of vertices and linear in (d/2k)k, where k is the register number. This significantly improves the running times and space achieved for parity games of bounded register number by Lehtinen (2018) and by Parys (2020). The running time of the algorithm based on small Strahler-universal trees yields a novel trade-off k⋅lg(d/k)=O(logn) between the two natural parameters that measure the structural complexity of a parity game, which allows solving parity games in polynomial time. This includes as special cases the asymptotic settings of those parameters covered by the results of Calude, Jain Khoussainov, Li, and Stephan (2017), of JurdziƄski and Lazić (2017), and of Lehtinen (2018), and it significantly extends the range of such settings, for example to d=2O(lgn√) and k=O(lgn−√)

    Two-Player Reachability-Price Games on Single-Clock Timed Automata

    Full text link
    We study two player reachability-price games on single-clock timed automata. The problem is as follows: given a state of the automaton, determine whether the first player can guarantee reaching one of the designated goal locations. If a goal location can be reached then we also want to compute the optimum price of doing so. Our contribution is twofold. First, we develop a theory of cost functions, which provide a comprehensive methodology for the analysis of this problem. This theory allows us to establish our second contribution, an EXPTIME algorithm for computing the optimum reachability price, which improves the existing 3EXPTIME upper bound.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    New Deterministic Algorithms for Solving Parity Games

    Full text link
    We study parity games in which one of the two players controls only a small number kk of nodes and the other player controls the n−kn-k other nodes of the game. Our main result is a fixed-parameter algorithm that solves bipartite parity games in time kO(k)⋅O(n3)k^{O(\sqrt{k})}\cdot O(n^3), and general parity games in time (p+k)O(k)⋅O(pnm)(p+k)^{O(\sqrt{k})} \cdot O(pnm), where pp is the number of distinct priorities and mm is the number of edges. For all games with k=o(n)k = o(n) this improves the previously fastest algorithm by Jurdzi{\'n}ski, Paterson, and Zwick (SICOMP 2008). We also obtain novel kernelization results and an improved deterministic algorithm for graphs with small average degree

    The tropical shadow-vertex algorithm solves mean payoff games in polynomial time on average

    Full text link
    We introduce an algorithm which solves mean payoff games in polynomial time on average, assuming the distribution of the games satisfies a flip invariance property on the set of actions associated with every state. The algorithm is a tropical analogue of the shadow-vertex simplex algorithm, which solves mean payoff games via linear feasibility problems over the tropical semiring (RâˆȘ{−∞},max⁥,+)(\mathbb{R} \cup \{-\infty\}, \max, +). The key ingredient in our approach is that the shadow-vertex pivoting rule can be transferred to tropical polyhedra, and that its computation reduces to optimal assignment problems through Pl\"ucker relations.Comment: 17 pages, 7 figures, appears in 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part

    When is Containment Decidable for Probabilistic Automata?

    Get PDF
    The containment problem for quantitative automata is the natural quantitative generalisation of the classical language inclusion problem for Boolean automata. We study it for probabilistic automata, where it is known to be undecidable in general. We restrict our study to the class of probabilistic automata with bounded ambiguity. There, we show decidability (subject to Schanuel's conjecture) when one of the automata is assumed to be unambiguous while the other one is allowed to be finitely ambiguous. Furthermore, we show that this is close to the most general decidable fragment of this problem by proving that it is already undecidable if one of the automata is allowed to be linearly ambiguous

    Lower Bounds for Structuring Unreliable Radio Networks

    Full text link
    In this paper, we study lower bounds for randomized solutions to the maximal independent set (MIS) and connected dominating set (CDS) problems in the dual graph model of radio networks---a generalization of the standard graph-based model that now includes unreliable links controlled by an adversary. We begin by proving that a natural geographic constraint on the network topology is required to solve these problems efficiently (i.e., in time polylogarthmic in the network size). We then prove the importance of the assumption that nodes are provided advance knowledge of their reliable neighbors (i.e, neighbors connected by reliable links). Combined, these results answer an open question by proving that the efficient MIS and CDS algorithms from [Censor-Hillel, PODC 2011] are optimal with respect to their dual graph model assumptions. They also provide insight into what properties of an unreliable network enable efficient local computation.Comment: An extended abstract of this work appears in the 2014 proceedings of the International Symposium on Distributed Computing (DISC

    Probabilistic Timed Automata with Clock-Dependent Probabilities

    Get PDF
    Probabilistic timed automata are classical timed automata extended with discrete probability distributions over edges. We introduce clock-dependent probabilistic timed automata, a variant of probabilistic timed automata in which transition probabilities can depend linearly on clock values. Clock-dependent probabilistic timed automata allow the modelling of a continuous relationship between time passage and the likelihood of system events. We show that the problem of deciding whether the maximum probability of reaching a certain location is above a threshold is undecidable for clock-dependent probabilistic timed automata. On the other hand, we show that the maximum and minimum probability of reaching a certain location in clock-dependent probabilistic timed automata can be approximated using a region-graph-based approach.Comment: Full version of a paper published at RP 201

    Beeping a Maximal Independent Set

    Full text link
    We consider the problem of computing a maximal independent set (MIS) in an extremely harsh broadcast model that relies only on carrier sensing. The model consists of an anonymous broadcast network in which nodes have no knowledge about the topology of the network or even an upper bound on its size. Furthermore, it is assumed that an adversary chooses at which time slot each node wakes up. At each time slot a node can either beep, that is, emit a signal, or be silent. At a particular time slot, beeping nodes receive no feedback, while silent nodes can only differentiate between none of its neighbors beeping, or at least one of its neighbors beeping. We start by proving a lower bound that shows that in this model, it is not possible to locally converge to an MIS in sub-polynomial time. We then study four different relaxations of the model which allow us to circumvent the lower bound and find an MIS in polylogarithmic time. First, we show that if a polynomial upper bound on the network size is known, it is possible to find an MIS in O(log^3 n) time. Second, if we assume sleeping nodes are awoken by neighboring beeps, then we can also find an MIS in O(log^3 n) time. Third, if in addition to this wakeup assumption we allow sender-side collision detection, that is, beeping nodes can distinguish whether at least one neighboring node is beeping concurrently or not, we can find an MIS in O(log^2 n) time. Finally, if instead we endow nodes with synchronous clocks, it is also possible to find an MIS in O(log^2 n) time.Comment: arXiv admin note: substantial text overlap with arXiv:1108.192

    Ranking and Repulsing Supermartingales for Reachability in Probabilistic Programs

    Full text link
    Computing reachability probabilities is a fundamental problem in the analysis of probabilistic programs. This paper aims at a comprehensive and comparative account on various martingale-based methods for over- and under-approximating reachability probabilities. Based on the existing works that stretch across different communities (formal verification, control theory, etc.), we offer a unifying account. In particular, we emphasize the role of order-theoretic fixed points---a classic topic in computer science---in the analysis of probabilistic programs. This leads us to two new martingale-based techniques, too. We give rigorous proofs for their soundness and completeness. We also make an experimental comparison using our implementation of template-based synthesis algorithms for those martingales

    Expressive Equivalence and Succinctness of Parametrized Automata with respect to Finite Memory Automata

    Get PDF
    International audienceWe compare parametrized automata, a class of automata recently introduced by the authors, against finite memory automata with non-deterministic assignment, an existing class of automata used to model services. We prove that both classes have the same expressive power, while parametrized automata can be exponentially succinct in some cases. We then prove that deciding simulation preorder for parametrized automata is EXPTIME-complete, extending an earlier result showing it in EXPTIME
    • 

    corecore