224 research outputs found

    Optimization of Generalized Multichannel Quantum Defect reference functions for Feshbach resonance characterization

    Full text link
    This work stresses the importance of the choice of the set of reference functions in the Generalized Multichannel Quantum Defect Theory to analyze the location and the width of Feshbach resonance occurring in collisional cross-sections. This is illustrated on the photoassociation of cold rubidium atom pairs, which is also modeled using the Mapped Fourier Grid Hamiltonian method combined with an optical potential. The specificity of the present example lies in a high density of quasi-bound states (closed channel) interacting with a dissociation continuum (open channel). We demonstrate that the optimization of the reference functions leads to quantum defects with a weak energy dependence across the relevant energy threshold. The main result of our paper is that the agreement between the both theoretical approaches is achieved only if optimized reference functions are used.Comment: submitte to Journal of Physics

    Collision photography: polarization imaging of atom-molecule collisions

    No full text
    We report differential scattering experiments on the laser excitation of Na+Mcollision pairs with M=Nâ‚‚, CO, Câ‚‚Hâ‚‚, and COâ‚‚. The collision event is probed by the laser polarization revealing geometric and electronic properties of the collision pair. The experimental data are compared to the results of a Monte Carlo trajectory simulation using ab initio quantum chemical data.Financial support from the Deutsche Forschungsgemeinschaft and the Schweizerischer Nationalfond (Project No. 20- 065290.01) is gratefully acknowledged

    Dissociation energy of the hydrogen molecule at 10−9^{-9} accuracy

    Get PDF
    The ionization energy of ortho-H2_2 has been determined to be EIo(H2)/(hc)=124 357.238 062(25)E^\mathrm{o}_\mathrm{I}(\mathrm{H}_2)/(hc)=124\,357.238\,062(25) cm−1^{-1} from measurements of the GK(1,1)--X(0,1) interval by Doppler-free two-photon spectroscopy using a narrow band 179-nm laser source and the ionization energy of the GK(1,1) state by continuous-wave near-infrared laser spectroscopy. EIoE^\mathrm{o}_\mathrm{I}(H2_2) was used to derive the dissociation energy of H2_2, D0N=1D^{N=1}_{0}(H2_2), at 35 999.582 894(25)35\,999.582\,894(25) cm−1^{-1} with a precision that is more than one order of magnitude better than all previous results. The new result challenges calculations of this quantity and represents a benchmark value for future relativistic and QED calculations of molecular energies.Comment: 6 pages, 5 figure

    IRIS: Efficient Visualization, Data Analysis and Experiment Management for Wireless Sensor Networks

    Get PDF
    The design of ubiquitous computing environments is challenging, mainly due to the unforeseeable impact of real-world environments on the system performance. A crucial step to validate the behavior of these systems is to perform in-field experiments under various conditions. We introduce IRIS, an experiment management and data processing tool allowing the definition of arbitrary complex data analysis applications. While focusing on Wireless Sensor Networks, IRIS supports the seamless integration of heterogeneous data gathering technologies. The resulting flexibility and extensibility enable the definition of various services, from experiment management and performance evaluation to user-specific applications and visualization. IRIS demonstrated its effectiveness in three real-life use cases, offering a valuable support for in-field experimentation and development of customized applications for interfacing the end user with the system

    Structural and magnetic characterization of batch-fabricated nickel encapsulated multi-walled carbon nanotubes

    Get PDF
    We report on the growth and fabrication of Ni-filled multi-walled carbon nanotubes (Ni-MWNTs) with an average diameter of 115 nm and variable length of 400 nm-1μm. The Ni-MWNTs were grown using template-assisted electrodeposition and low pressure chemical vapor deposition (LPCVD) techniques. Anodized alumina oxide (AAO) templates were fabricated on Si using a current controlled process. This was followed by the electrodeposition of Ni nanowires (NWs) using galvanostatic pulsed current (PC) electrodeposition. Ni NWs served as the catalyst to grow Ni-MWNTs in an atmosphere of H2/C2H2 at a temperature of 700º C. Time dependent depositions were carried out to understand the diffusion and growth mechanism of Ni-MWNTs. Characterization was carried out using scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), Raman spectroscopy and energy dispersive x-ray spectroscopy (EDX). TEM analysis revealed that the Ni nanowires possess a fcc structure. To understand the effects of the electrodeposition parameters, and also the effects of the high temperatures encountered during MWNT growth on the magnetic properties of the Ni-MWNTs, vibrating sample magnetometer (VSM) measurements were performed. The template-based fabrication method is repeatable, efficient, enables batch fabrication and provides good control on the dimensions of the Ni-MWNT

    Large-Scale Selective Sweep among Segregation Distorter Chromosomes in African Populations of Drosophila melanogaster

    Get PDF
    Segregation Distorter (SD) is a selfish, coadapted gene complex on chromosome 2 of Drosophila melanogaster that strongly distorts Mendelian transmission; heterozygous SD/SD+ males sire almost exclusively SD-bearing progeny. Fifty years of genetic, molecular, and theory work have made SD one of the best-characterized meiotic drive systems, but surprisingly the details of its evolutionary origins and population dynamics remain unclear. Earlier analyses suggested that the SD system arose recently in the Mediterranean basin and then spread to a low, stable equilibrium frequency (1–5%) in most natural populations worldwide. In this report, we show, first, that SD chromosomes occur in populations in sub-Saharan Africa, the ancestral range of D. melanogaster, at a similarly low frequency (∼2%), providing evidence for the robustness of its equilibrium frequency but raising doubts about the Mediterranean-origins hypothesis. Second, our genetic analyses reveal two kinds of SD chromosomes in Africa: inversion-free SD chromosomes with little or no transmission advantage; and an African-endemic inversion-bearing SD chromosome, SD-Mal, with a perfect transmission advantage. Third, our population genetic analyses show that SD-Mal chromosomes swept across the African continent very recently, causing linkage disequilibrium and an absence of variability over 39% of the length of the second chromosome. Thus, despite a seemingly stable equilibrium frequency, SD chromosomes continue to evolve, to compete with one another, or evade suppressors in the genome

    Rydberg states of the HeH<sup>+</sup> ion calculated by <i>ab initio</i> methods: potential energies and effective principal quantum numbers

    No full text
    <div><p>More than 80 excited electronic states of the hydrohelium ion HeH<sup>+</sup> of <sup>1, 3</sup>Σ<sup>+</sup>, <sup>1, 3</sup>Π, <sup>1, 3</sup>Δ, <sup>1, 3</sup>Φ and <sup>1, 3</sup>Γ symmetry have been calculated <i>ab initio</i> up to <i>n</i> = 6 for internuclear distances ranging from 0.5 to 100 bohr. The computations involve a configuration interaction (CI) treatment based on a home-made suite of programs that uses special basis sets designed for the representation of molecular Rydberg states. The results are compared with previous computations where these are available (up to <i>n</i> = 4), and it is found that except for the very lowest excited states, the present energies are consistently lower than those obtained previously, with an average lowering corresponding to several hundred cm<sup>−1</sup>. It is shown that with the exception of its ground state, HeH<sup>+</sup> is an effective one-electron system having an overall electronic structure similar to H<sup>+</sup><sub>2</sub>. The interaction of the excited electron with the He<sup>+</sup> 1<i>s</i> core electron causes small singlet–triplet splittings to appear and ℓ-mixing interactions to occur, that are not present in H<sup>+</sup><sub>2</sub>.</p></div

    Fast Ion Beam Laser Spectroscopy of N2O+N_{2}O^{+}: Effects of Orbital Angular Momentum and Vibrational Anharmonicity

    No full text
    Author Institution: Universite Laval, Departement de Physisque, CRAM-LPAM OuebecFast ion beam laser spectroscopy has been used to study the Aˉ2Σ+−Xˉ2\bar{A}^{2}\Sigma^{+} - \bar{X}^{2} transition of N2O+N_{2}O^{+} under high resolution Molecular constants are obtained for several spin-vibronic states, including for the first time levels associated with the Xˉ2,V=2\bar{X}^{2}, V=2 manifold. These data are interpreted in detail in terms of a large - amplitude bending Hamiltonian which allows for the effects of orbital angular momentum, spin - orbit coupling and vibrational anharmonicity
    • …
    corecore