89 research outputs found

    Electrical transport in ion beam created InAs nanospikes

    Full text link
    Ion beam irradiation has previously been demonstrated as a method for creating nanowire-like semiconductor nanostructures, but no previous studies have reported on the electrical properties of those structures. In this work we describe the creation and in situ transmission electron microscopy electrical characterization of nanoscale InAs spike structures on both InAs and InP substrates fabricated using a focused ion beam erosion method. Those InAs ‘nanospikes’ are found to possess internal structures with varying amounts of ion damaged and single crystalline material. Nanospike electrical behavior is analyzed with respect to model electronic structures and is similar to cases of barrier limited conduction in nanowires. The different electrical responses of each nanospike are found to be the result of variation in their structure, with the conductivity of InAs nanospikes formed on InAs substrates found to increase with the degree of nanospike core crystallinity. The conductivity of InAs nanospikes formed on InP substrates does not show a dependence on core crystallinity, and may be controlled by the other internal barriers to conduction inherent in that system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98603/1/0957-4484_23_31_315301.pd

    Benzene at 1GHz. Magnetic field-induced fine structure

    No full text
    The deuterium NMR spectrum of benzene-d6 in a high field spectrometer (1 GHz protons) exhibits a magnetic field-induced deuterium quadrupolar splitting ??. The magnitude of ?? observed for the central resonance is smaller than that observed for the 13C satellite doublets ???. This difference, ?(??) = ??? ? ??, is due to unresolved fine structure contributions to the respective resonances. We determine the origins of and simulate this difference, and report pulse sequences that exploit the connectivity of the peaks in the 13C and 2H spectra to determine the relative signs of the indirect coupling, JCD, and ??. The positive sign found for ?? is consonant with the magnetic field biasing of an isolated benzene molecule—the magnetic energy of the aromatic ring is lowest for configurations where the C6 axis is normal to the field. In the neat liquid the magnitude of ?? is decreased by the pair correlations in this prototypical molecular liquid

    Reactive synthesis of Ti-Al intermetallics during microwave heating in an E-field maximum

    Full text link
    The time-resolved X-ray diffraction synchrotron radiation technique was used in combination with E-field microwave heating to study in situ the kinetics of intermetallic phase formation in the Ti-Al system. The reaction of Ti with Al is triggered by the melting and spreading of Al onto the surface of Ti particles. The tetragonal TiAl 3 phase is the primary reaction product, formed by instantaneous nucleation at the interface between the unreacted Ti cores and the Al melt. The growth of TiAl 3 layers is diffusion-controlled. These preliminary results demonstrate that microwave heating can be used to rapidly synthesise intermetallic phases from high-purity elemental powders. © 2010 Elsevier B.V. All rights reserved.This work has been supported by the Swiss National Science Foundation (Grant 20PA21E-129193).Vaucher, S.; Stir, M.; Ishizaki, K.; Catalá Civera, JM.; Nicula, R. (2011). Reactive synthesis of Ti-Al intermetallics during microwave heating in an E-field maximum. Thermochimica Acta. 522(1):151-154. doi:10.1016/j.tca.2010.11.026S151154522

    Modern microwave methods in solid state inorganic materials chemistry: from fundamentals to manufacturing

    Get PDF
    No abstract available

    Understanding the twist-bend nematic phase: the characterisation of 1-(4-cyanobiphenyl-4'-yloxy)-6-(4-cyanobiphenyl-4'-yl) hexane (CB6OCB) and comparison with CB7CB

    Get PDF
    Acknowledgements The FFTEM data were obtained at the (Cryo) TEM facility at the Liquid Crystal Institute, Kent State University, supported by the Ohio Research Scholars Program Research Cluster on Surfaces in Advanced Materials. ODL acknowledges the support of NSF DMR-1410378 grant. The authors are grateful for financial support from MINECO/FEDER MAT2015-66208-C3-2-P and from the Gobierno Vasco (GI/IT-449-10) OA via RSC Gold4GoldPeer reviewedPublisher PD

    Benzene at 1GHz. Magnetic field-induced fine structure

    Get PDF
    International audienceThe deuterium NMR spectrum of benzene-d(6) in a high field spectrometer (1 GHz protons) exhibits a magnetic field-induced deuterium quadrupolar splitting Delta v. The magnitude of Delta v observed for the central resonance is smaller than that observed for the C-13 satellite doublets Delta v'. This difference, Delta(Delta v) Delta v' - Delta v, is due to unresolved fine structure contributions to the respective resonances. We determine the origins of and simulate this difference, and report pulse sequences that exploit the connectivity of the peaks in the C-13 and H-2 spectra to determine the relative signs of the indirect coupling, J(CD), and Delta v. The positive sign found for Delta v is consonant with the magnetic field biasing of an isolated benzene molecule-the magnetic energy of the aromatic ring is lowest for configurations where the C-6 axis is normal to the field. In the neat liquid the magnitude of Delta v is decreased by the pair correlations in this prototypical molecular liquid
    corecore