46 research outputs found

    Regulation of the fibrosis and angiogenesis promoter SPARC/osteonectin in human adipose tissue by weight change, leptin, insulin, and glucose

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.OBJECTIVE: Matricellular Secreted Protein, Acidic and Rich in Cysteine (SPARC), originally discovered in bone as osteonectin, is a mediator of collagen deposition and promotes fibrosis. Adipose tissue collagen has recently been found to be linked with metabolic dysregulation. Therefore, we tested the hypothesis that SPARC in human adipose tissue is influenced by glucose metabolism and adipokines. RESEARCH DESIGN AND METHODS: Serum and adipose tissue biopsies were obtained from morbidly obese nondiabetic subjects undergoing bariatric surgery and lean control subjects for analysis of metabolic markers, SPARC, and various cytokines (RT-PCR). Additionally, 24 obese subjects underwent a very-low-calorie diet of 1,883 kJ (450 kcal)/day for 16 weeks and serial subcutaneous-abdominal-adipose tissue (SCAT) biopsies (weight loss: 28 +/- 3.7 kg). Another six lean subjects underwent fast-food-based hyperalimentation for 4 weeks (weight gain: 7.2 +/- 1.6 kg). Finally, visceral adipose tissue explants were cultured with recombinant leptin, insulin, and glucose, and SPARC mRNA and protein expression determined by Western blot analyses. RESULTS: SPARC expression in human adipose tissue correlated with fat mass and was higher in SCAT. Weight loss induced by very-low-calorie diet lowered SPARC expression by 33% and increased by 30% in adipose tissue of subjects gaining weight after a fast-food diet. SPARC expression was correlated with leptin independent of fat mass and correlated with homeostasis model assessment-insulin resistance. In vitro experiments showed that leptin and insulin potently increased SPARC production dose dependently in visceral adipose tissue explants, while glucose decreased SPARC protein. CONCLUSIONS: Our data suggest that SPARC expression is predominant in subcutaneous fat and its expression and secretion in adipose tissue are influenced by fat mass, leptin, insulin, and glucose. The profibrotic effects of SPARC may contribute to metabolic dysregulation in obesity.This work was supported by Diabetes UK, Swedish Research Council (11285), University Hospital of Linkoping Research Funds; Diabetes Research Centre of Linkoping University; and the Gamla Tjaenarinnor Foundation. No potential conflicts of interest relevant to this article were reported. Parts of this study were presented in abstract form at the 69th Scientific Sessions of the American Diabetes Association, New Orleans, Louisiana, 5–9 June 2009

    Mg/Ca-Temperature Calibration of Polar Benthic foraminifera species for reconstruction of bottom water temperatures on the Antarctic shelf

    Get PDF
    Benthic foraminifera Mg/Ca is a well-established bottom water temperature (BWT) proxy used in paleoclimate studies. The relationship between Mg/Ca and BWT for numerous species has been determined using core-top and culturing studies. However, the scarcity of calcareous microfossils in Antarctic shelf sediments and poorly defined calibrations at low temperatures has limited the use of the foraminiferal Mg/Ca paleothermometer in ice proximal Antarctic sediments. Here we present paired ocean temperature and modern benthic foraminifera Mg/Ca data for three species, Trifarina angulosa, Bulimina aculeata, and Globocassidulina subglobosa, but with a particular focus on Trifarina angulosa. The core-top data from several Antarctic sectors span a BWT range of −1.7 to +1.2 °C and constrain the relationship between Mg/Ca and cold temperatures. We compare our results to published lower-latitude core-top data for species in the same or related genera, and in the case of Trifarina angulosa, produce a regional calibration. The resulting regional equation for Trifarina angulosa is Temperature (°C) = (Mg/Ca −1.14 ± 0.035)/0.069 ± 0.033). Addition of our Trifarina angulosa data to the previously published Uvigerina spp. dataset provides an alternative global calibration, although some data points appear to be offset from this relationship and are discussed. Mg-temperature relationships for Bulimina aculeata and Globocassidulina subglobosa are also combined with previously published data to produce calibration equations of Temperature (°C) = (Mg/Ca-1.04 ± 0.07)/0.099 ± 0.01 and Temperature (°C) = (Mg/Ca-0.99 ± 0.03)/0.087 ± 0.01, respectively. These refined calibrations highlight the potential utility of benthic foraminifera Mg/Ca-paleothermometry for reconstructing past BWT in Antarctic margin settings

    Nuclear expression of FLT1 and its ligand PGF in FUS-DDIT3 carrying myxoid liposarcomas suggests the existence of an intracrine signaling loop

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The FUS-DDIT3 fusion oncogene encodes an abnormal transcription factor that has a causative role in the development of myxoid/round-cell liposarcomas (MLS/RCLS). We have previously identified <it>FLT1 </it>(<it>VEGFR1</it>) as a candidate downstream target gene of FUS-DDIT3. The aim of this study was to investigate expression of FLT1 and its ligands in MLS cells.</p> <p>Methods</p> <p>HT1080 human fibrosarcoma cells were transiently transfected with <it>FUS-DDIT3</it>-GFP variant constructs and FLT1 expression was measured by quantitative real-time PCR. In addition, <it>FLT1</it>, <it>PGF, VEGFA and VEGFB </it>expression was measured in MLS/RCLS cell lines, MLS/RCLS tumors and in normal adiopocytes. We analyzed nine cases of MLS/RCLS and one cell line xenografted in mice for FLT1 protein expression using immunohistochemistry. MLS/RCLS cell lines were also analyzed for FLT1 by immunofluorescence and western blot. MLS/RCLS cell lines were additionally treated with FLT1 tyrosine kinase inhibitors and assayed for alterations in proliferation rate.</p> <p>Results</p> <p><it>FLT1 </it>expression was dramatically increased in transfected cells stably expressing FUS-DDIT3 and present at high levels in cell lines derived from MLS. The FLT1 protein showed a strong nuclear expression in cells of MLS tissue as well as in cultured MLS cells, which was confirmed by cellular fractionation. Tissue array analysis showed a nuclear expression of the FLT1 protein also in several other tumor and normal cell types including normal adipocytes. The FLT1 ligand coding gene <it>PGF </it>was highly expressed in cultured MLS cells compared to normal adipocytes while the other ligand genes <it>VEGFA </it>and <it>VEGFB </it>were expressed to lower levels. A more heterogeneous expression pattern of these genes were observed in tumor samples. No changes in proliferation rate of MLS cells were detected at concentrations for which the kinase inhibitors have shown specific inhibition of FLT1.</p> <p>Conclusions</p> <p>Our results imply that <it>FLT1 </it>is induced as an indirect downstream effect of FUS-DDIT3 expression in MLS. This could be a consequence of the ability of FUS-DDIT3 to hijack parts of normal adipose tissue development and reprogram primary cells to a liposarcoma-like phenotype. The findings of nuclear FLT1 protein and expression of corresponding ligands in MLS and normal tissues may have implications for tissue homeostasis and tumor development through auto- or intracrine signaling.</p

    Body fat mass and the proportion of very large adipocytes in pregnant women are associated with gestational insulin resistance.

    Get PDF
    Pregnancy is accompanied by fat gain and insulin resistance. Changes in adipose tissue morphology and function during pregnancy and factors contributing to gestational insulin resistance are incompletely known. We sought to characterize adipose tissue in trimesters 1 and 3 (T1/T3) in normal weight (NW) and obese pregnant women, and identify adipose tissue-related factors associated with gestational insulin resistance

    The Acute Phase Protein Serum Amyloid A Induces Lipolysis and Inflammation in Human Adipocytes through Distinct Pathways

    Get PDF
    Background: The acute phase response (APR) is characterized by alterations in lipid and glucose metabolism leading to an increased delivery of energy substrates. In adipocytes, there is a coordinated decrease in Free Fatty acids (FFAs) and glucose storage, in addition to an increase in FFAs mobilization. Serum Amyloid A (SAA) is an acute phase protein mainly associated with High Density Lipoproteins (HDL). We hypothesized that enrichment of HDL with SAA, during the APR, could be implicated in the metabolic changes occurring in adipocytes. Methodology/Principal Findings: In vitro differentiated human adipocytes (hMADS) were treated with SAA enriched HDL or recombinant SAA and the metabolic phenotype of the cells analyzed. In hMADS, SAA induces an increased lipolysis through an ERK dependent pathway. At the molecular level, SAA represses PPARc2, C/EBPa and SREBP-1c gene expression, three transcription factors involved in adipocyte differentiation or lipid synthesis. In addition, the activation of the NF-kB pathway by SAA leads to the induction of pro-inflammatory cytokines and chemokines, as in the case of immune cells. These latter findings were replicated in freshly isolated mature human adipocytes. Conclusions/Significance: Besides its well-characterized role in cholesterol metabolism, SAA has direct metabolic effects on human adipocytes. These metabolic changes could be at least partly responsible for alterations of adipocyte metabolism observed during the APR as well as during pathophysiological conditions such as obesity and conditions leading to insuli

    Differential coexpression analysis of obesity-associated networks in human subcutaneous adipose tissue

    Get PDF
    Objective: To use a unique obesity-discordant sib-pair study design to combine differential expression analysis, expression quantitative trait loci (eQTLs) mapping and a coexpression regulatory network approach in subcutaneous human adipose tissue to identify genes relevant to the obese state. Study design: Genome-wide transcript expression in subcutaneous human adipose tissue was measured using Affymetrix U133 Plus 2.0 microarrays (Affymetrix, Santa Clara, CA, USA), and genome-wide genotyping data was obtained using an Applied Biosystems (Applied Biosystems; Life Technologies, Carlsbad, CA, USA) SNPlex linkage panel. Subjects: A total of 154 Swedish families ascertained through an obese proband (body mass index (BMI) >30 kg m−2) with a discordant sibling (BMI>10 kg m−2 less than proband). Results: Approximately one-third of the transcripts were differentially expressed between lean and obese siblings. The cellular adhesion molecules (CAMs) KEGG grouping contained the largest number of differentially expressed genes under cis-acting genetic control. By using a novel approach to contrast CAMs coexpression networks between lean and obese siblings, a subset of differentially regulated genes was identified, with the previously GWAS obesity-associated neuronal growth regulator 1 (NEGR1) as a central hub. Independent analysis using mouse data demonstrated that this finding of NEGR1 is conserved across species. Conclusion: Our data suggest that in addition to its reported role in the brain, NEGR1 is also expressed in subcutaneous adipose tissue and acts as a central ‘hub’ in an obesity-related transcript network

    Carboxylesterases in lipid metabolism: from mouse to human

    Get PDF

    Differences in associations between HSD11B1 gene expression and metabolic parameters in subjects with and without impaired glucose homeostasis

    No full text
    Aims: Animal studies indicate a role for 11 beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) in the development of obesity. The association to glucose homeostasis is less clear. We investigated the relationship between HSD11B1 mRNA levels in adipose tissue and in skeletal muscle and anthropometric and metabolic measurements in humans with and without impaired glucose homeostasis. Methods: Twelve obese subjects with impaired glucose homeostasis (MetS+) and 12 obese controls (MetS-) received a Very Low Calorie Diet for 16 weeks and adipose tissue biopsies, blood samples and measurements were obtained. In a second cohort, skeletal muscle biopsies, blood samples and measurements were obtained from 18 subjects with type 2 diabetes (T2DM) and 17 subjects with normal glucose tolerance (NGT). Gene expression was measured by DNA microarray in both studies. Results: HSD11B1 mRNA levels were reduced during diet, and anthropometric measurements and metabolic parameters were associated with HSD11B1 mRNA levels in the MetS-group. However, in the MetS+ group these associations were lost or in opposite direction. This difference was also observed in skeletal muscle between T2DM and NGT. Conclusions: HSD11B1 mRNA levels are associated with metabolic parameters and anthropometric measurements in subjects with normal glucose homeostasis but not in subjects with impaired glucose homeostasis. (C) 2010 Elsevier Ireland Ltd. All rights reserved
    corecore