590 research outputs found

    Complete and Deterministic discrimination of polarization Bell state assisted by momentum entanglement

    Get PDF
    A complete and deterministic Bell state measurement was realized by a simple linear optics experimental scheme which adopts 2-photon polarization-momentum hyperentanglement. The scheme, which is based on the discrimination among the single photon Bell states of the hyperentangled state, requires the adoption of standard single photon detectors. The four polarization Bell states have been measured with average fidelity F=0.889±0.010F=0.889\pm0.010 by using the linear momentum degree of freedom as the ancilla. The feasibility of the scheme has been characterized as a function of the purity of momentum entanglement.Comment: 4 pages, v2, comments adde

    Quantum control in foundational experiments

    Full text link
    We describe a new class of experiments designed to probe the foundations of quantum mechanics. Using quantum controlling devices, we show how to attain a freedom in temporal ordering of the control and detection of various phenomena. We consider wave-particle duality in the context of quantum-controlled and the entanglement-assisted delayed-choice experiments. Then we discuss a quantum-controlled CHSH experiment and measurement of photon's transversal position and momentum in a single set-up.Comment: Contribution to the Proceedings of the workshop Horizons of Quantum Physics, Taipei, 14-18.10.2012. Published version: two new authors, modified and streamlined presentation, new section on quantum control in complementary position/momentum measurement

    Characterization of A Novel Avalanche Photodiode for Single Photon Detection in VIS-NIR Range

    Full text link
    In this work we investigate operation in the Geiger mode of the new single photon avalanche photo diode (SPAD) SAP500 manufactured by Laser Components. This SPAD is sensitive in the range 400-1000nm and has a conventional reach-through structure which ensures good quantum efficiency at the long end of the spectrum. By use of passive and active quenching schemes we investigate detection efficiency, timing jitter, dark counts, afterpulsing, gain and other important parameters and compare them to the "standard" low noise SPAD C30902SH from Perkin Elmer. We conclude that SAP500 offers better combination of detection efficiency, low noise and timing precision

    Practical Quantum Key Distribution with Polarization-Entangled Photons

    Full text link
    We present an entangled-state quantum cryptography system that operated for the first time in a real world application scenario. The full key generation protocol was performed in real time between two distributed embedded hardware devices, which were connected by 1.45 km of optical fiber, installed for this experiment in the Vienna sewage system. The generated quantum key was immediately handed over and used by a secure communication application.Comment: 5 pages, 3 figure

    Divergent evolution of protein conformational dynamics in dihydrofolate reductase.

    Get PDF
    Molecular evolution is driven by mutations, which may affect the fitness of an organism and are then subject to natural selection or genetic drift. Analysis of primary protein sequences and tertiary structures has yielded valuable insights into the evolution of protein function, but little is known about the evolution of functional mechanisms, protein dynamics and conformational plasticity essential for activity. We characterized the atomic-level motions across divergent members of the dihydrofolate reductase (DHFR) family. Despite structural similarity, Escherichia coli and human DHFRs use different dynamic mechanisms to perform the same function, and human DHFR cannot complement DHFR-deficient E. coli cells. Identification of the primary-sequence determinants of flexibility in DHFRs from several species allowed us to propose a likely scenario for the evolution of functionally important DHFR dynamics following a pattern of divergent evolution that is tuned by cellular environment

    Experimental delayed-choice entanglement swapping

    Full text link
    Motivated by the question, which kind of physical interactions and processes are needed for the production of quantum entanglement, Peres has put forward the radical idea of delayed-choice entanglement swapping. There, entanglement can be "produced a posteriori, after the entangled particles have been measured and may no longer exist". In this work we report the first realization of Peres' gedanken experiment. Using four photons, we can actively delay the choice of measurement-implemented via a high-speed tunable bipartite state analyzer and a quantum random number generator-on two of the photons into the time-like future of the registration of the other two photons. This effectively projects the two already registered photons onto one definite of two mutually exclusive quantum states in which either the photons are entangled (quantum correlations) or separable (classical correlations). This can also be viewed as "quantum steering into the past"

    A Fast and Compact Quantum Random Number Generator

    Get PDF
    We present the realization of a physical quantum random number generator based on the process of splitting a beam of photons on a beam splitter, a quantum mechanical source of true randomness. By utilizing either a beam splitter or a polarizing beam splitter, single photon detectors and high speed electronics the presented devices are capable of generating a binary random signal with an autocorrelation time of 11.8 ns and a continuous stream of random numbers at a rate of 1 Mbit/s. The randomness of the generated signals and numbers is shown by running a series of tests upon data samples. The devices described in this paper are built into compact housings and are simple to operate.Comment: 23 pages, 6 Figs. To appear in Rev. Sci. Inst

    Conditioned Unitary Transformation on biphotons

    Full text link
    A conditioned unitary transformation (90o90^o polarization rotation) is performed at single-photon level. The transformation is realized by rotating polarization for one of the photons of a polarization-entangled biphoton state (signal photon) by means of a Pockel's cell triggered by the detection of the other (idler) photon after polarization selection. As a result, polarization degree for the signal beam changes from zero to the value given by the idler detector quantum efficiency. This result is relevant to practical realization of various quantum information schemes and can be used for developing a new method of absolute quantum efficiency calibration
    corecore