44 research outputs found

    Investigation of quasi-periodic variations in hard X-rays of solar flares. II. Further investigation of oscillating magnetic traps

    Get PDF
    In our recent paper (Solar Physics 261, 233) we investigated quasi-periodic oscillations of hard X-rays during impulsive phase of solar flares. We have come to conclusion that they are caused by magnetosonic oscillations of magnetic traps within the volume of hard-X-ray (HXR) loop-top sources. In the present paper we investigate four flares which show clear quasi-periodic sequences of HXR pulses. We also describe our phenomenological model of oscillating magnetic traps to show that it can explain observed properties of HXR oscillations. Main results are the following: 1. We have found that low-amplitude quasi-periodic oscillations occur before impulsive phase of some flares. 2. We have found that quasi-period of the oscillations can change in some flares. We interpret this as being due to changes of the length of oscillating magnetic traps. 3. During impulsive phase a significant part of the energy of accelerated (non-thermal) electrons is deposited within the HXR loop-top source. 4. Our analysis suggests that quick development of impulsive phase is due to feedback between pulses of the pressure of accelerated electrons and the amplitude of magnetic-trap oscillation. 5. We have also determined electron number density and magnetic filed strength for HXR loop-top sources of several flares. The values fall within the limits of N(215)×1010N \approx (2 -15) \times 10^{10} cm3^{-3}, B(45130)B \approx (45 - 130) gauss.Comment: 18 pages, 14 figures, submitted to Solar Physic

    Investigation of quasi-periodic varaiations in hard X-rays of solar flares

    Full text link
    The aim of the present paper is to use quasi-periodic oscillations in hard X-rays (HXRs) of solar flares as a diagnostic tool for investigation of impulsive electron acceleration. We have selected a number of flares which showed quasi-periodic oscillations in hard X-rays and their loop-top sources could be easily recognized in HXR images. We have considered MHD standing waves to explain the observed HXR oscillations. We interpret these HXR oscillations as being due to oscillations of magnetic traps within cusp-like magnetic structures. This is confirmed by a good correlation between periods of the oscillations and the sizes of the loop-top sources. We argue that a model of oscillating magnetic traps is adequate to explain the observations. During the compressions of a trap particles are accelerated, but during its expansions plasma, coming from chromospheric evaporation, fills the trap, which explains the large number of electrons being accelerated during a sequence of strong impulses. The advantage of our model of oscillating magnetic traps is that it can explain both the impulses of electron acceleration and quasi-periodicity of their distribution in time.Comment: 21 pages, 11 figures, 3 tables, submitted to Solar Physic

    Plasma heating in the very early and decay phases of solar flares

    Full text link
    In this paper we analyze the energy budgets of two single-loop solar flares under the assumption that non-thermal electrons are the only source of plasma heating during all phases of both events. The flares were observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Geostationary Operational Environmental Satellite (GOES) on September 20, 2002 and March 17, 2002, respectively. For both investigated flares we derived the energy fluxes contained in non-thermal electron beams from the RHESSI observational data constrained by observed GOES light-curves. We showed that energy delivered by non-thermal electrons was fully sufficient to fulfil the energy budgets of the plasma during the pre-heating and impulsive phases of both flares as well as during the decay phase of one of them. We concluded that in the case of the investigated flares there was no need to use any additional ad-hoc heating mechanisms other than heating by non-thermal electrons.Comment: 22 pages, 10 figures, The Astrophysical Journal (accepted, March 2011

    Modeling Evolving Coronal Loops with Observations from STEREO, Hinode, and TRACE

    Full text link
    The high densities, long lifetimes, and narrow emission measure distributions observed in coronal loops with apex temperatures near 1 MK are difficult to reconcile with physical models of the solar atmosphere. It has been proposed that the observed loops are actually composed of sub-resolution ``threads'' that have been heated impulsively and are cooling. We apply this heating scenario to nearly simultaneous observations of an evolving post-flare loop arcade observed with the EUVI/\textit{STEREO}, XRT/\textit{Hinode}, and \textit{TRACE} imagers and the EIS spectrometer on \textit{HINODE}. We find that it is possible to reproduce the extended loop lifetime, high electron density, and the narrow differential emission measure with a multi-thread hydrodynamic model provided that the time scale for the energy release is sufficiently short. The model, however, does not reproduce the evolution of the very high temperature emission observed with XRT. In XRT the emission appears diffuse and it may be that this discrepancy is simply due to the difficulty of isolating individual loops at these temperatures. This discrepancy may also reflect fundamental problems with our understanding of post-reconnection dynamics during the conductive cooling phase of loop evolution.Comment: Revised version submitted to ApJ in response to referee's comment

    Simultaneous X-ray spectroscopy of YY Gem with Chandra and XMM-Newton

    Get PDF
    We report on a detailed study of the X-ray spectrum of the nearby eclipsing spectroscopic binary YY Gem. Observations were obtained simultaneously with both large X-ray observatories, XMM-Newton and Chandra. We compare the high-resolution spectra acquired with the Reflection Grating Spectrometer onboard XMM-Newton and with the Low Energy Transmission Grating Spectrometer onboard Chandra, and evidence in direct comparison the good performance of both instruments in terms of wavelength and flux calibration. The strongest lines in the X-ray spectrum of YY Gem are from oxygen. Oxygen line ratios indicate the presence of a low-temperature component (1-4 MK) with density n_e < 2 10^{10} cm^-3. The X-ray lightcurve reveals two flares and a dip corresponding to the secondary eclipse. An increase of the density during phases of high activity is suggested from time-resolved spectroscopy. Time-resolved global fitting of the European Photon Imaging Camera CCD spectrum traces the evolution of temperature and emission measure during the flares. These medium-resolution spectra show that temperatures > 10^7 K are relevant in the corona of YY Gem although not as dominant as the lower temperatures represented by the strongest lines in the high-resolution spectrum. Magnetic loops with length on the order of 10^9 cm, i.e., about 5 % of the radius of each star, are inferred from a comparison with a one-dimensional hydrodynamic model. This suggests that the flares did not erupt in the (presumably more extended) inter-binary magnetosphere but are related to one of the components of the binary.Comment: 15 pages, accepted for publication in A&

    Energy Release During Slow Long Duration Flares Observed by RHESSI

    Get PDF
    Slow Long Duration Events (SLDEs) are flares characterized by long duration of rising phase. In many such cases impulsive phase is weak with lack of typical short-lasting pulses. Instead of that smooth, long-lasting Hard X-ray (HXR) emission is observed. We analysed hard X-ray emission and morphology of six selected SLDEs. In our analysis we utilized data from RHESSI and GOES satellites. Physical parameters of HXR sources were obtained from imaging spectroscopy and were used for the energy balance analysis. Characteristic time of heating rate decrease, after reaching its maximum value, is very long, which explains long rising phase of these flares.Comment: Accepted for publication in Solar Physic

    The Sun as an X-ray Star: III. Flares

    Get PDF
    In previous works we have developed a method to convert solar X-ray data, collected with the Yohkoh/SXT, into templates of stellar coronal observations. Here we apply the method to several solar flares, for comparison with stellar X-ray flares. Eight flares, from weak (GOES class C5.8) to very intense ones (X9) are selected as representative of the flaring Sun. The emission measure distribution vs. temperature, EM(T), of the flaring regions is derived from Yohkoh/SXT observations in the rise, peak and decay of the flares. The EM(T) is rather peaked and centered around T107T \approx 10^7 K for most of the time. Typically, it grows during the rise phase of the flare, and then it decreases and shifts toward lower temperatures during the decay, more slowly if there is sustained heating. The most intense flare we studied shows emission measure even at very high temperature (T108T \approx 10^8 K). Time-resolved X-ray spectra both unfiltered and filtered through the instrumental responses of the non-solar instruments ASCA/SIS and ROSAT/PSPC are then derived. Synthesized ASCA/SIS and ROSAT/PSPC spectra are generally well fitted with single thermal components at temperatures close to that of the EM(T) maximum, albeit two thermal components are needed to fit some flare decays. ROSAT/PSPC spectra show that solar flares are in a two-orders of magnitude flux range (10610810^6 - 10^8 erg cm2^{-2} s1^{-1}) and a narrow PSPC hardness ratio range, however higher than that of typical non-flaring solar-like stars.Comment: 32 pages, 8 figures, 3 table

    Footpoint versus loop-top hard X-ray emission sources in solar flares

    Get PDF
    The hard X-ray flux ratio R of the footpoint sources to the loop-top source has been used to investigate non-thermal electron trapping and precipitation in solar flares. Considering the mission-long Yohkoh Hard X-ray Telescope database, from which we selected 117 flares, we investigated a dependence of the ratio R on flare loop parameters like height h and column depth N. We used non-thermal electron beams as a diagnostic tool for magnetic convergence. The ratio R decreases with h which we interpret as an effect of converging field geometry. Two branches seen in the R-h diagram suggest that in the solar corona two kinds of magnetic loops can exist: a more-converged ones that are more frequent (above 80%) and less-converged loops that are less frequent (below 20%). A lack of correlation between the ratio R and N can be due to a more complex configuration of investigated events than seen in soft X-rays. Obtained values of the magnetic mirror ratio are consistent with previous works and suggest a strongly nonpotential configuration. Further investigation including RHESSI data is needed to verify our results.Comment: 12 pages, 6 figures, to be published in A&
    corecore