20 research outputs found

    Association between -T786C NOS3 polymorphism and resistant hypertension: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is estimated that 5% of the hypertensive patients are resistant to conventional antihypertensive therapy. Polymorphisms in the endothelial nitric oxide synthase (NOS3) gene have been associated with high blood pressure levels, but not with resistant hypertension. The aim of the present study was to investigate if the -786T>C and G894T (Glu298Asp) polymorphisms of the NOS3 gene were associated with resistant hypertension.</p> <p>Methods</p> <p>A prospective case-control observational study was performed. From a series of 950 consecutive patients followed up during 42 months, 48 patients with resistant hypertension were detected. 232 patients with controlled high blood pressure were also included.</p> <p>Results</p> <p>No differences were observed in the distribution of G894T (Glu298Asp) NOS3 genotypes between the resistant hypertension group and the controlled hypertension patients. However, genotype -786CC was more frequent in the group of patients with resistant hypertension (33.3%) than in the group of patients with controlled high blood pressure (17.7%) (p 0.03). Furthermore carriers of allele T (-786TC and -786TT) were more frequent in patients with controlled hypertension (82.3%) than those with resistant hypertension (66.7%) (Multivariate analysis; RR 2.09; 95% CI 1.03–4.24; p 0.004).</p> <p>Conclusion</p> <p>Our results indicate that genotype -786CC of the NOS3 gene increase the susceptibility to suffer resistant hypertension, which suggest that resistance to conventional therapy could be determined at the endothelial level.</p

    Recruitment of governing elements for electron transfer in the nitric oxide synthase family

    No full text
    At least three building blocks are responsible for the molecular basis of the modulation of electron transfer in nitric oxide synthase (NOS) isoforms: the calmodulin-binding sequence, the C-terminal extension, and the autoregulatory loop in the reductase domain. We have attempted to impart the control conferred by the C termini of NOS to cytochrome P450 oxidoreductase (CYPOR), which contains none of these regulatory elements. The effect of these C termini on the properties of CYPOR sheds light on the possible evolutionary origin of NOS and addresses the recruitment of new peptides on the development of new functions for CYPOR. The C termini of NOSs modulate flavoprotein-mediated electron transfer to various electron acceptors. The reduction of the artificial electron acceptors cytochrome c, 2,6-dichlorophenolindophenol, and ferricyanide was inhibited by the addition of any of these C termini to CYPOR, whereas the reduction of molecular O(2) was increased. This suggests a shift in the rate-limiting step, indicating that the NOS C termini interrupt electron flux between flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) and/or the electron acceptors. The modulation of CYPOR by the addition of the NOS C termini is also supported by flavin reoxidation and fluorescence-quenching studies and antibody recognition of the C-terminal extension. These experiments support the origin of the NOS enzymes from modules consisting of a heme domain and CYPOR or ferredoxin–NADP(+) reductase- and flavodoxin-like subdomains that constitute CYPOR, followed by further recruitment of smaller modulating elements into the flavin-binding domains

    Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension

    No full text
    Disorders of carbohydrate and lipid metabolism have been reported to cluster in patients with essential hypertension and in spontaneously hypertensive rats (SHRs). A deletion in the Cd36 gene on chromosome 4 has recently been implicated in defective carbohydrate and lipid metabolism in isolated adipocytes from SHRs. However, the role of Cd36 and chromosome 4 in the control of blood pressure and systemic cardiovascular risk factors in SHRs is unknown. In the SHR.BN-Il6/Npy congenic strain, we have found that transfer of a segment of chromosome 4 (including Cd36) from the Brown Norway (BN) rat onto the SHR background induces reductions in blood pressure and ameliorates dietary-induced glucose intolerance, hyperinsulinemia, and hypertriglyceridemia. These results demonstrate that a single chromosome region can influence a broad spectrum of cardiovascular risk factors involved in the hypertension metabolic syndrome. However, analysis of Cd36 genotypes in the SHR and stroke-prone SHR strains indicates that the deletion variant of Cd36 was not critical to the initial selection for hypertension in the SHR model. Thus, the ability of chromosome 4 to influence multiple cardiovascular risk factors, including hypertension, may depend on linkage of Cd36 to other genes trapped within the differential segment of the SHR.BN-Il6/Npy strain. J. Clin. Invest. 103:1651–1657 (1999)

    An evaluation of inflammatory gene polymorphisms in sibships discordant for premature coronary artery disease: the GRACE-IMMUNE study

    Get PDF
    BACKGROUND Inflammatory cytokines play a crucial role in coronary artery disease (CAD). We investigated the association between 48 coding and three non-coding single nucleotide polymorphisms (SNPs) from 35 inflammatory genes and the development of CAD, using a large discordant sibship collection (2699 individuals in 891 families). METHODS Family-based association tests (FBAT) and conditional logistic regression (CLR) were applied to single SNPs and haplotypes and, in CLR, traditional risk factors of CAD were adjusted for. RESULTS An association was observed between CAD and a common three-locus haplotype in the interleukin one (IL-1) cluster with P = 0.006 in all CAD cases, P = 0.01 in myocardial infarction (MI) cases and P = 0.0002 in young onset CAD cases (<50 years). The estimated odds ratio (OR) per copy of this haplotype is 1.21 (95% confidence interval [95CI] = 1.04 - 1.40) for CAD; 1.30 (95CI = 1.09 - 1.56) for MI and 1.50 (95CI = 1.22 - 1.86) for young onset CAD. When sex, smoking, hypertension and hypercholesterolaemia were adjusted for, the haplotype effect remained nominally significant (P = 0.05) in young onset CAD cases, more so (P = 0.002) when hypercholesterolaemia was excluded. As many as 82% of individuals affected by CAD had hypercholesterolaemia compared to only 29% of those unaffected, making the two phenotypes difficult to separate. CONCLUSION Despite the multiple hypotheses tested, the robustness of family design to population confoundings and the consistency with previous findings increase the likelihood of true association. Further investigation using larger data sets is needed in order for this to be confirmed
    corecore