352 research outputs found

    Thermoluminescence of zircon: a kinetic model

    Get PDF
    The mineral zircon, ZrSiO4, belongs to a class of promising materials for geochronometry by means of thermoluminescence (TL) dating. The development of a reliable and reproducible method for TL dating with zircon requires detailed knowledge of the processes taking place during exposure to ionizing radiation, long-term storage, annealing at moderate temperatures and heating at a constant rate (TL measurements). To understand these processes one needs a kinetic model of TL. This paper is devoted to the construction of such amodel. The goal is to study the qualitative behaviour of the system and to determine the parameters and processes controlling TL phenomena of zircon. The model considers the following processes: (i) Filling of electron and hole traps at the excitation stage as a function of the dose rate and the dose for both (low dose rate) natural and (high dose rate) laboratory irradiation. (ii) Time dependence of TL fading in samples irradiated under laboratory conditions. (iii) Short time annealing at a given temperature. (iv) Heating of the irradiated sample to simulate TL experiments both after laboratory and natural irradiation. The input parameters of the model, such as the types and concentrations of the TL centres and the energy distributions of the hole and electron traps, were obtained by analysing the experimental data on fading of the TL-emission spectra of samples from different geological locations. Electron paramagnetic resonance (EPR) data were used to establish the nature of the TL centres. Glow curves and 3D TL emission spectra are simulated and compared with the experimental data on time-dependent TL fading. The saturation and annealing behaviour of filled trap concentrations has been considered in the framework of the proposed kinetic model and comparedwith the EPR data associated with the rare-earth ions Tb3+ and Dy3+, which play a crucial role as hole traps and recombination centres. Inaddition, the behaviour of some of the SiOmn− centres has been compared with simulation results.

    A threatened species index for Australian birds

    Get PDF
    Quantifying species population trends is crucial for monitoring progress towards global conservation targets, justifying investments, planning targeted responses and raising awareness about threatened species. Many global indicators are slow in response and report on common species, not on those at greatest risk of extinction. Here we develop a Threatened Species Index as a dynamic tool for tracking annual changes in Australia's imperiled birds. Based on the Living Planet Index method and containing more than 17,000 time series for 65 bird taxa surveyed systematically, the index at its second iteration shows an average reduction of 59% between 1985 and 2016, and 44% between 2000 and 2016. Decreases seem most severe for shorebirds and terrestrial birds and least severe for seabirds. The index provides a potential means for measuring performance against the Convention on Biological Diversity's Aichi Target 12, enabling governments, agencies and the public to observe changes in threatened species

    On the importance of grain size in luminescence dating using quartz

    Get PDF
    There are two major problems commonly encountered when applying Optically Stimulated Luminescence (OSL) dating in the high dose range: (i) age discrepancy between different grain sizes, and (ii) age underestimation. A marked and systematic discrepancy between fine-grain (4–11 μm) and coarse-grain (63–90 μm) quartz single aliquot regeneration protocol (SAR) ages has been reported previously for Romanian and Serbian loess >40 ka (De of ∼100 Gy), generally with fine-grain ages underestimating the depositional age. In this paper, we show a similar age pattern for two grain size fractions from Chinese loess, thus pointing to a potential worldwide phenomenon. While age underestimation is often attributed to signal saturation problems, this is not the case for fine grain material, which saturates at higher doses than coarse grains, yet begins to underestimate true ages earlier. Here we examine the dose response curves of quartz from different sedimentary contexts around the world, using a range of grain sizes (diameters of 4–11 μm, 11–30 μm, 35–50 μm, 63–90 μm, 90–125 μm, 125–180 μm, and 180–250 μm). All dose response curves can be adequately described by a sum of two saturating exponential functions, whose saturation characteristics (D0 values) are clearly anticorrelated with grain diameter (φ) through an inverse square root relationship, D0 = A/√φ, where A is a scaling factor. While the mechanism behind this grain-size dependency of saturation characteristics still needs to be understood, our results show that the observation of an extended SAR laboratory dose response curve does not necessarily enable high doses to be recorded accurately, or provide a corresponding extended age range

    A MYC-ZNF148-ID1/3 regulatory axis modulating cancer stem cell traits in aggressive breast cancer

    Get PDF
    The MYC proto-oncogene (MYC) is one of the most frequently overexpressed genes in breast cancer that drives cancer stem cell-like traits, resulting in aggressive disease progression and poor prognosis. In this study, we identified zinc finger transcription factor 148 (ZNF148, also called Zfp148 and ZBP-89) as a direct target of MYC. ZNF148 suppressed cell proliferation and migration and was transcriptionally repressed by MYC in breast cancer. Depletion of ZNF148 by short hairpin RNA (shRNA) and CRISPR/Cas9 increased triple-negative breast cancer (TNBC) cell proliferation and migration. Global transcriptome and chromatin occupancy analyses of ZNF148 revealed a central role in inhibiting cancer cell de-differentiation and migration. Mechanistically, we identified the Inhibitor of DNA binding 1 and 3 (ID1, ID3), drivers of cancer stemness and plasticity, as previously uncharacterized targets of transcriptional repression by ZNF148. Silencing of ZNF148 increased the stemness and tumorigenicity in TNBC cells. These findings uncover a previously unknown tumor suppressor role for ZNF148, and a transcriptional regulatory circuitry encompassing MYC, ZNF148, and ID1/3 in driving cancer stem cell traits in aggressive breast cancer

    Active adaptive conservation of threatened species in the face of uncertainty

    Get PDF
    Adaptive management has a long history in the natural resource management literature, but despite this, few practitioners have developed adaptive strategies to conserve threatened species. Active adaptive management provides a framework for valuing learning by measuring the degree to which it improves long-run management outcomes. The challenge of an active adaptive approach is to find the correct balance between gaining knowledge to improve management in the future and achieving the best short-term outcome based on current knowledge. We develop and analyze a framework for active adaptive management of a threatened species. Our case study concerns a novel facial tumor disease affecting the Australian threatened species Sarcophilus harrisii: the Tasmanian devil. We use stochastic dynamic programming with Bayesian updating to identify the management strategy that maximizes the Tasmanian devil population growth rate, taking into account improvements to management through learning to better understand disease latency and the relative effectiveness of three competing management options. Exactly which management action we choose each year is driven by the credibility of competing hypotheses about disease latency and by the population growth rate predicted by each hypothesis under the competing management actions. We discover that the optimal combination of management actions depends on the number of sites available and the time remaining to implement management. Our approach to active adaptive management provides a framework to identify the optimal amount of effort to invest in learning to achieve long-run conservation objectives

    A 2017 Horizon Scan of Emerging Issues for Global Conservation and Biological Diversity

    Get PDF
    We present the results of our eighth annual horizon scan of emerging issues likely to affect global biological diversity, the environment, and conservation efforts in the future. The potential effects of these novel issues might not yet be fully recognized or understood by the global conservation community, and the issues can be regarded as both opportunities and risks. A diverse international team with collective expertise in horizon scanning, science communication, and conservation research, practice, and policy reviewed 100 potential issues and identified 15 that qualified as emerging, with potential substantial global effects. These issues include new developments in energy storage and fuel production, sand extraction, potential solutions to combat coral bleaching and invasive marine species, and blockchain technology.Cambridge Conservation Initiative, funded by the Natural Environment Research Council and the Royal Society for the Protection of Birds, Arcadia, Natural Environment Research Council (Grant ID: NE/N014472/1

    Diel Variations in Survey Catch Rates and Survey Catchability of Spiny Dogfish and their Pelagic Prey in the Northeast US Continental Shelf Large Marine Ecosystem

    Get PDF
    This study examines the potential uncertainty in survey biomass estimates of Spiny Dogfish Squalus acanthias in the Northeast U.S. Continental Shelf Large Marine Ecosystem (NES LME). Diel catch-per-unit-effort (CPUE) estimates are examined from the Northeast Fisheries Science Center bottom trawl surveys conducted during autumn (1963-2009) and spring (1968-2009). Influential environmental variables on survey catchability are identified for Spiny Dogfish life history stages and five pelagic prey species: Butterfish Peprilus triacanthus, Atlantic Herring Clupea harengus, shortfin squid Illex spp., longfin squid Doryteuthis spp., and Atlantic Mackerel Scomber scombrus. Daytime survey catchability was significantly higher than nighttime catchability for most species during autumn and for mature male Spiny Dogfish, shortfin squid, and longfin squid during spring in the NES LME. For most stages and species examined, breakpoint analyses identified significant increases in CPUE in the morning, peak CPUE during the day, and significant declines in CPUE in the late afternoon. Seasonal probabilities of daytime catch were largely driven by solar zenith angle for most species, with stronger trends identified during autumn. Unadjusted CPUE estimates appear to overestimate absolute abundance, with adjustments resulting in reductions in absolute abundance ranging from 41% for Spiny Dogfish to 91% for shortfin and longfin squids. These findings have important implications for Spiny Dogfish regarding estimates of population consumption of key pelagic prey species and their ecological footprint within the NES LME
    corecore