2,002 research outputs found

    Ultracold collisions in tight harmonic traps: Quantum defect model and application to metastable helium atoms

    Full text link
    We analyze a system of two colliding ultracold atoms under strong harmonic confinement from the viewpoint of quantum defect theory and formulate a generalized self-consistent method for determining the allowed energies. We also present two highly efficient computational methods for determining the bound state energies and eigenfunctions of such systems. The perturbed harmonic oscillator problem is characterized by a long asymptotic region beyond the effective range of the interatomic potential. The first method, which is based on quantum defect theory and is an adaptation of a technique developed by one of the authors (GP) for highly excited states in a modified Coulomb potential, is very efficient for integrating through this outer region. The second method is a direct numerical solution of the radial Schr\"{o}dinger equation using a discrete variable representation of the kinetic energy operator and a scaled radial coordinate grid. The methods are applied to the case of trapped spin-polarized metastable helium atoms. The calculated eigenvalues agree very closely for the two methods, and with those computed self-consistently using the generalized self-consistent method.Comment: 11 pages,REVTEX, text substantially revised, title modifie

    Laser scabbling of mortars

    Get PDF
    Laser scabbling of concrete is the process by which the surface layer of concrete may be removed through the use of a low power density laser beam. Previous research has suggested that the driving force responsible for laser scabbling is developed within the mortar. The aim of this investigation was to establish the key parameters that influence laser scabbling of mortars. The results show that the removal of free water from mortars prohibits scabbling, but resaturation allows mortar to scabble. A reduced permeability, either due to a reduction in the water/binder ratio or the use of 25% PFA replacement, enhances the scabbling. A higher fine aggregate content increases volume removal and fragment sizes during laser scabbling

    Flight tests of IFR landing approach systems for helicopters

    Get PDF
    Joint NASA/FAA helicopter flight tests were conducted to investigate airborne radar approaches (ARA) and microwave landing system (MLS) approaches. Flight-test results were utilized to prove NASA with a data base to be used as a performance measure for advanced guidance and navigation concepts, and to provide FAA with data for establishment of TERPS criteria. The first flight-test investigation consisted of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico, using weather/mapping radar, operational pilots, and a Bell 212 helicopter. The second flight-test investigation consisted of IFR MLS approaches at Crows Landing (near Ames Research Center), with a Bell UH-1H helicopter, using NASA, FAA, and operational industry pilots. Tests are described and results discussed

    Modeling the adiabatic connection in Hâ‚‚

    Get PDF
    Full configuration interaction (FCI) data are used to quantify the accuracy of approximate adiabatic connection (AC) forms in describing the ground state potential energy curve of H2, within spin-restricted density functional theory (DFT). For each internuclear separation R, accurate properties of the AC are determined from large basis set FCI calculations. The parameters in the approximate AC form are then determined so as to reproduce these FCI values exactly, yielding an exchange-correlation energy expressed entirely in terms of FCI-derived quantities. This is combined with other FCI-derived energy components to give the total electronic energy; comparison with the FCI energy quantifies the accuracy of the AC form. Initial calculations focus on a [1/1]-Padé-based form. The potential energy curve determined using the procedure is a notable improvement over those from existing DFT functionals. The accuracy near equilibrium is quantified by calculating the bond length and vibrational wave numbers; errors in the latter are below 0.5%. The molecule dissociates correctly, which can be traced to the use of virtual orbital eigenvalues in the slope in the noninteracting limit, capturing static correlation. At intermediate R, the potential energy curve exhibits an unphysical barrier, similar to that noted previously using the random phase approximation. Alternative forms of the AC are also considered, paying attention to size extensivity and the behavior in the strong-interaction limit; none provide an accurate potential energy curve for all R, although good accuracy can be achieved near equilibrium. The study demonstrates how data from correlated ab initio calculations can provide valuable information about AC forms and highlight areas where further theoretical progress is required

    Solar Carbon Monoxide, Thermal Profiling, and the Abundances of C, O, and their Isotopes

    Get PDF
    A solar photospheric "thermal profiling" analysis is presented, exploiting the infrared rovibrational bands of carbon monoxide (CO) as observed with the McMath-Pierce Fourier transform spectrometer (FTS) at Kitt Peak, and from above the Earth's atmosphere by the Shuttle-borne ATMOS experiment. Visible continuum intensities and center-limb behavior constrained the temperature profile of the deep photosphere, while CO center-limb behavior defined the thermal structure at higher altitudes. The oxygen abundance was self consistently determined from weak CO absorptions. Our analysis was meant to complement recent studies based on 3-D convection models which, among other things, have revised the historical solar oxygen (and carbon) abundance downward by a factor of nearly two; although in fact our conclusions do not support such a revision. Based on various considerations, an oxygen abundance of 700+/-100 ppm (parts per million relative to hydrogen) is recommended; the large uncertainty reflects the model sensitivity of CO. New solar isotopic ratios also are reported for 13C, 17O, and 18O.Comment: 90 pages, 19 figures (some with parts "a", "b", etc.); to be published in the Astrophysical Journal Supplement

    The effect of ageing and drying on laser scabbling of concrete

    Get PDF
    Laser scabbling of concrete is a process by which the surface layer of concrete is removed through the use of a high power (low power density) laser beam. In order to understand how the age and treatment of structures may affect the laser scabbling process, the aim of the research presented in this paper was to establish a relationship between laser interaction time, surface temperature and volume removal for cementitious materials of different ages and different degrees of saturation. The investigation focussed on (i) the effect of age on saturated specimens and (ii) the effect of prolonged drying. The results show that drying of specimens had the largest effect on scabbling. The effect of age on saturated specimens was small for PFA + OPC pastes, mortars and concretes, but significant for OPC pastes, where the volume of scabbling dramatically reduced with age

    Chemotherapy for advanced breast cancer: what influences oncologists' decision-making?

    Get PDF
    Chemotherapy is widely used in the management of patients with advanced breast cancer. However, a considerable proportion of patients experience toxic side effects without gaining benefit. This study aimed to elicit oncologists' views of the goals of chemotherapy for patients with advanced breast cancer and to elicit which factors are important in decisions to recommend chemotherapy to such patients. 30 oncologists underwent a semi-structured interview to examine their views of 5 goals of chemotherapy and of various disease, treatment and patient-related factors that might influence decisions to offer treatment. The clinicians also made decisions regarding treatment in relation to a hypothetical patient scenario under varying clinical conditions. Relief of symptoms and improvement of activity were rated as the most valuable and achievable goals of treatment. The patient's performance status, frailty and their wishes regarding treatment were the most important patient-related factors in determining decision-making. The most important disease/treatment-related factors were pace of the disease, previous poor response to chemotherapy, co-existing symptoms and concurrent medical conditions. The hypothetical scenario revealed that co-existing medical conditions, adverse previous response, increased age and depression would decrease the likelihood of recommending chemotherapy, whereas key symptoms (e.g. breathlessness) and the patient's goals would increase the likelihood. The findings suggest that British oncologists primarily aim to improve patients' physical function, although subjective factors, such as a patient's desire for anti-cancer treatment and their future goals, also influence decisions to offer treatment. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Pamela: development of the RF system for a non-relativistic non-scaling FFAG

    Get PDF
    The PAMELA project(Particle Accelerator For MEdical Applications) currently consists of the design of a particle therapy facility. The project, which is in the design phase, contains Non-Scaling FFAG, particle accelerator capable of rapid beam acceleration, giving a pulse repetition rate of 1kHz, far beyond that of a conventional synchrotron. To realise the repetition rate, a key component of the accelerator is the rf accelerating system. The combination of a high energy gain per turn and a high repetition rate is a significant challenge. In this paper, options for the rf system of the proton ring and the status of development are presented
    • …
    corecore