485 research outputs found

    Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics

    Full text link
    In this philosophical paper, we explore computational and biological analogies to address the fine-tuning problem in cosmology. We first clarify what it means for physical constants or initial conditions to be fine-tuned. We review important distinctions such as the dimensionless and dimensional physical constants, and the classification of constants proposed by Levy-Leblond. Then we explore how two great analogies, computational and biological, can give new insights into our problem. This paper includes a preliminary study to examine the two analogies. Importantly, analogies are both useful and fundamental cognitive tools, but can also be misused or misinterpreted. The idea that our universe might be modelled as a computational entity is analysed, and we discuss the distinction between physical laws and initial conditions using algorithmic information theory. Smolin introduced the theory of "Cosmological Natural Selection" with a biological analogy in mind. We examine an extension of this analogy involving intelligent life. We discuss if and how this extension could be legitimated. Keywords: origin of the universe, fine-tuning, physical constants, initial conditions, computational universe, biological universe, role of intelligent life, cosmological natural selection, cosmological artificial selection, artificial cosmogenesis.Comment: 25 pages, Foundations of Science, in pres

    Reconstructing complex regions of genomes using long-read sequencing technology

    Get PDF
    Cataloged from PDF version of article.Obtaining high-quality sequence continuity of complex regions of recent segmental duplication remains one of the major challenges of finishing genome assemblies. In the human and mouse genomes, this was achieved by targeting large-insert clones using costly and laborious capillary-based sequencing approaches. Sanger shotgun sequencing of clone inserts, however, has now been largely abandoned, leaving most of these regions unresolved in newer genome assemblies generated primarily by next-generation sequencing hybrid approaches. Here we show that it is possible to resolve regions that are complex in a genome-wide context but simple in isolation for a fraction of the time and cost of traditional methods using long-read single molecule, real-time (SMRT) sequencing and assembly technology from Pacific Biosciences (PacBio). We sequenced and assembled BAC clones corresponding to a 1.3-Mbp complex region of chromosome 17q21.31, demonstrating 99.994% identity to Sanger assemblies of the same clones. We targeted 44 differences using Illumina sequencing and find that PacBio and Sanger assemblies share a comparable number of validated variants, albeit with different sequence context biases. Finally, we targeted a poorly assembled 766-kbp duplicated region of the chimpanzee genome and resolved the structure and organization for a fraction of the cost and time of traditional finishing approaches. Our data suggest a straightforward path for upgrading genomes to a higher quality finished state

    Resolving the complexity of the human genome using single-molecule sequencing

    Get PDF
    The human genome is arguably the most complete mammalian reference assembly, yet more than 160 euchromatic gaps remain and aspects of its structural variation remain poorly understood ten years after its completion. To identify missing sequence and genetic variation, here we sequence and analyse a haploid human genome (CHM1) using single-molecule, real-time DNA sequencing. We close or extend 55% of the remaining interstitial gaps in the human GRCh37 reference genome - 78% of which carried long runs of degenerate short tandem repeats, often several kilobases in length, embedded within (G+C)-rich genomic regions. We resolve the complete sequence of 26,079 euchromatic structural variants at the base-pair level, including inversions, complex insertions and long tracts of tandem repeats. Most have not been previously reported, with the greatest increases in sensitivity occurring for events less than 5 kilobases in size. Compared to the human reference, we find a significant insertional bias (3:1) in regions corresponding to complex insertions and long short tandem repeats. Our results suggest a greater complexity of the human genome in the form of variation of longer and more complex repetitive DNA that can now be largely resolved with the application of this longer-read sequencing technology

    Error threshold in optimal coding, numerical criteria and classes of universalities for complexity

    Full text link
    The free energy of the Random Energy Model at the transition point between ferromagnetic and spin glass phases is calculated. At this point, equivalent to the decoding error threshold in optimal codes, free energy has finite size corrections proportional to the square root of the number of degrees. The response of the magnetization to the ferromagnetic couplings is maximal at the values of magnetization equal to half. We give several criteria of complexity and define different universality classes. According to our classification, at the lowest class of complexity are random graph, Markov Models and Hidden Markov Models. At the next level is Sherrington-Kirkpatrick spin glass, connected with neuron-network models. On a higher level are critical theories, spin glass phase of Random Energy Model, percolation, self organized criticality (SOC). The top level class involves HOT design, error threshold in optimal coding, language, and, maybe, financial market. Alive systems are also related with the last class. A concept of anti-resonance is suggested for the complex systems.Comment: 17 page

    Simple tools for assembling and searching high-density picolitre pyrophosphate sequence data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The advent of pyrophosphate sequencing makes large volumes of sequencing data available at a lower cost than previously possible. However, the short read lengths are difficult to assemble and the large dataset is difficult to handle. During the sequencing of a virus from the tsetse fly, <it>Glossina pallidipes</it>, we found the need for tools to search quickly a set of reads for near exact text matches.</p> <p>Methods</p> <p>A set of tools is provided to search a large data set of pyrophosphate sequence reads under a "live" CD version of Linux on a standard PC that can be used by anyone without prior knowledge of Linux and without having to install a Linux setup on the computer. The tools permit short lengths of <it>de novo </it>assembly, checking of existing assembled sequences, selection and display of reads from the data set and gathering counts of sequences in the reads.</p> <p>Results</p> <p>Demonstrations are given of the use of the tools to help with checking an assembly against the fragment data set; investigating homopolymer lengths, repeat regions and polymorphisms; and resolving inserted bases caused by incomplete chain extension.</p> <p>Conclusion</p> <p>The additional information contained in a pyrophosphate sequencing data set beyond a basic assembly is difficult to access due to a lack of tools. The set of simple tools presented here would allow anyone with basic computer skills and a standard PC to access this information.</p

    Radio Astronomy

    Get PDF
    Contains research objectives, summary of research and reports on five research projects.National Aeronautics and Space Administration (Grant NGL 22-009-016)National Aeronautics and Space Administration (Grant NGR 22-009-421)Langley Research Center Contract NASI-10693National Science Foundation (Grants GP-20769)National Science Foundation (Grants GP-21348)National Science Foundation (Grants GP-14589)California Institute of Technology Contract 952568Sloan Fund for Basic Research (M.I.T., Grant 241

    Meraculous: De Novo Genome Assembly with Short Paired-End Reads

    Get PDF
    We describe a new algorithm, meraculous, for whole genome assembly of deep paired-end short reads, and apply it to the assembly of a dataset of paired 75-bp Illumina reads derived from the 15.4 megabase genome of the haploid yeast Pichia stipitis. More than 95% of the genome is recovered, with no errors; half the assembled sequence is in contigs longer than 101 kilobases and in scaffolds longer than 269 kilobases. Incorporating fosmid ends recovers entire chromosomes. Meraculous relies on an efficient and conservative traversal of the subgraph of the k-mer (deBruijn) graph of oligonucleotides with unique high quality extensions in the dataset, avoiding an explicit error correction step as used in other short-read assemblers. A novel memory-efficient hashing scheme is introduced. The resulting contigs are ordered and oriented using paired reads separated by ∼280 bp or ∼3.2 kbp, and many gaps between contigs can be closed using paired-end placements. Practical issues with the dataset are described, and prospects for assembling larger genomes are discussed

    Resuscitation Endpoints in Trauma

    Full text link
    Fluid and blood resuscitation is the mainstay of therapy for the treatment of hemorrhagic shock, whether due to trauma or other etiology. Cessation of hemorrhage with rapid hemostatic techniques is the first priority in the treatment of traumatic hemorrhagic shock, with concomitant fluid resuscitation with blood and crystalloids to maintain perfusion and organ function. “Hypotensive” or “low-volume” resuscitation has become increasingly accepted in the prehospital resuscitation phase of trauma, prior to definitive hemorrhage control, since aggressive fluid resuscitation may increase bleeding. Resuscitation after hemorrhage control is focused on restoration of tissue oxygenation. Efforts to optimize resuscitation have used “resuscitation endpoints” as markers of adequacy of resuscitation. The resuscitation endpoints that have been evaluated include both global (restoration of blood pressure, heart rate and urine output, lactate, base deficit, mixed venous oxygen saturation, ventricular end-diastolic volume) and regional (gastric tonometry, near-infrared spectroscopy for measurement of muscle tissue oxygen saturation) measures. This review critically evaluates the evidence regarding the use of resuscitation endpoints in trauma.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75386/1/j.1778-428X.2005.tb00127.x.pd

    Identification of polymorphic inversions from genotypes

    Get PDF
    Background: Polymorphic inversions are a source of genetic variability with a direct impact on recombination frequencies. Given the difficulty of their experimental study, computational methods have been developed to infer their existence in a large number of individuals using genome-wide data of nucleotide variation. Methods based on haplotype tagging of known inversions attempt to classify individuals as having a normal or inverted allele. Other methods that measure differences between linkage disequilibrium attempt to identify regions with inversions but unable to classify subjects accurately, an essential requirement for association studies. Results: We present a novel method to both identify polymorphic inversions from genome-wide genotype data and classify individuals as containing a normal or inverted allele. Our method, a generalization of a published method for haplotype data [1], utilizes linkage between groups of SNPs to partition a set of individuals into normal and inverted subpopulations. We employ a sliding window scan to identify regions likely to have an inversion, and accumulation of evidence from neighboring SNPs is used to accurately determine the inversion status of each subject. Further, our approach detects inversions directly from genotype data, thus increasing its usability to current genome-wide association studies (GWAS). Conclusions: We demonstrate the accuracy of our method to detect inversions and classify individuals on principled-simulated genotypes, produced by the evolution of an inversion event within a coalescent model [2]. We applied our method to real genotype data from HapMap Phase III to characterize the inversion status of two known inversions within the regions 17q21 and 8p23 across 1184 individuals. Finally, we scan the full genomes of the European Origin (CEU) and Yoruba (YRI) HapMap samples. We find population-based evidence for 9 out of 15 well-established autosomic inversions, and for 52 regions previously predicted by independent experimental methods in ten (9+1) individuals [3,4]. We provide efficient implementations of both genotype and haplotype methods as a unified R package inveRsion
    corecore