682 research outputs found

    Evaluation of hydrodynamic chromatography coupled to inductively coupled plasma mass spectrometry for speciation of dissolved and nanoparticulate gold and silver

    Get PDF
    In this study, hydrodynamic chromatography coupled to inductively coupled plasma mass spectrometry has been evaluated for the simultaneous determination of dissolved and nanoparticulate species of gold and silver. Optimization of mobile phase was carried out with special attention to the column recovery of the different species and the resolution between them. Addition of 0.05 mM penicillamine to the mobile phase allowed the quantitative recovery of ionic gold and gold nanoparticles up to 50 nm, whereas 1 mM penicillamine was necessary for quantitative recovery of ionic silver and silver nanoparticles up to 40 nm. The resolution achieved between ionic gold and 10-nm gold nanoparticles was 0.7, whereas it ranged between 0.31 and 0.93 for ionic silver and 10-nm silver nanoparticles, depending on the composition of mobile phase. Best-case mass concentration detection limits for gold and silver species were 0.05 and 0.75 µg L-1, respectively. The developed methods allowed the simultaneous detection of nanoparticulate and dissolved species of gold and silver in less than 10 min. Size determination and quantification of gold and silver species were carried out in different dietary supplements, showing good agreement with the results obtained by electron microscopy and total and ultrafiltrable contents, respectively. Due to the attainable resolution, the quality of the quantitative results is affected by the relative abundance of nanoparticulate and dissolved species of the element and the size of the nanoparticles if present. Graphical abstract: [Figure not available: see fulltext.

    Coherent optical wavelength conversion via cavity-optomechanics

    Get PDF
    We theoretically propose and experimentally demonstrate coherent wavelength conversion of optical photons using photon-phonon translation in a cavity-optomechanical system. For an engineered silicon optomechanical crystal nanocavity supporting a 4 GHz localized phonon mode, optical signals in a 1.5 MHz bandwidth are coherently converted over a 11.2 THz frequency span between one cavity mode at wavelength 1460 nm and a second cavity mode at 1545 nm with a 93% internal (2% external) peak efficiency. The thermal and quantum limiting noise involved in the conversion process is also analyzed, and in terms of an equivalent photon number signal level are found to correspond to an internal noise level of only 6 and 4x10-3 quanta, respectively.Comment: 11 pages, 7 figures, appendi

    Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous “2.5 D” Photonic Crystal

    Get PDF
    International audienceThe authors report on the design, fabrication and operation of heterogeneous and compact "2.5 D" Photonic Crystal microlaser with a single plane of InAs quantum dots as gain medium. The high quality factor photonic structures are tailored for vertical emission. The devices consist of a top two-dimensional InP Photonic Crystal Slab, a SiO 2 bonding layer, and a bottom high index contrast Si/SiO 2 Bragg mirror deposited on a Si wafer. Despite the fact that no more than about 5% of the quantum dots distribution effectively contribute to the modal gain, room-temperature lasing operation, around 1.5µm, was achieved by photopumping. A low effective threshold, on the order of 350µW, and a spontaneous emission factor, over 0.13, could be deduced from experiments

    Knowledge, attitudes and anxiety towards influenza A/H1N1 vaccination of healthcare workers in Turkey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to analyze the factors associated with knowledge and attitudes about influenza A (H1N1) and vaccination, and possible relations of these factors with anxiety among healthcare workers (HCW).</p> <p>Methods</p> <p>The study used a cross-sectional descriptive design, and it was carried out between 23 November and 4 December 2009. A total of 300 HCW from two hospitals completed a questionnaire. Data collection tools comprised a questionnaire and the State-Trait Anxiety Inventory (STAI).</p> <p>Results</p> <p>Vaccination rate for 2009 pandemic influenza A(H1N1) among HCW was low (12.7%). Most of the respondents believed the vaccine was not safe and protective. Vaccination refusal was mostly related to the vaccine's side effects, disbelief to vaccine's protectiveness, negative news about the vaccine and the perceived negative attitude of the Prime Minister to the vaccine. State anxiety was found to be high in respondents who felt the vaccine was unsafe.</p> <p>Conclusions</p> <p>HCW considered the seriousness of the outbreak, their vaccination rate was low. In vaccination campaigns, governments have to aim at providing trust, and media campaigns should be used to reinforce this trust as well. Accurate reporting by the media of the safety and efficacy of influenza vaccines and the importance of vaccines for the public health would likely have a positive influence on vaccine uptake. Uncertain or negative reporting about the vaccine is detrimental to vaccination efforts.</p

    Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane

    Get PDF
    Photo- and electrochemical CO2 reduction to carbon fuels is not only an attractive solution to the greenhouse effect, but could also become an integral part of a global energy storage strategy with renewable electrical energy sources used to store energy in the chemical bonds of carbon fuels. A novel electrodeposition strategy is reported here for the preparation of highly dispersed, ultrafine metal nanoparticles and nanoalloys on an electroactive polymeric film. It is shown that a bimetallic Cu–Pd nanoalloy exhibits a greater than twofold enhancement in Faradaic efficiency for CO2 reduction to methane compared with a state-of-the-art nanoCu catalyst. The fabrication procedure for the alloy nanoparticles is straightforward and applicable as a general procedure for catalytic electrodes for integrated electrolysis devices

    An integrated model checking toolset for kernel P systems

    Get PDF
    P systems are the computational models introduced in the context of membrane computing, a computational paradigm within the more general area of unconventional computing. Kernel P (kP) systems are defined to unify the specification of different variants of P systems, motivated by challenging theoretical aspects and the need to model different problems. kP systems are supported by a software framework, called kPWORKBENCH, which integrates a set of related simulation and verification methodologies and tools. In this paper, we present an extension to kPWORKBENCH with a new model checking framework supporting the formal verification of kP system models. This framework supports both LTL and CTL properties. To make the property specification an easier task, we propose a property language, composed of natural language statements. We demonstrate our proposed methodology with an example

    Rare coding SNP in DZIP1 gene associated with late-onset sporadic Parkinson's disease

    Get PDF
    We present the first application of the hypothesis-rich mathematical theory to genome-wide association data. The Hamza et al. late-onset sporadic Parkinson's disease genome-wide association study dataset was analyzed. We found a rare, coding, non-synonymous SNP variant in the gene DZIP1 that confers increased susceptibility to Parkinson's disease. The association of DZIP1 with Parkinson's disease is consistent with a Parkinson's disease stem-cell ageing theory.Comment: 14 page

    Ontology of core data mining entities

    Get PDF
    In this article, we present OntoDM-core, an ontology of core data mining entities. OntoDM-core defines themost essential datamining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. The ontology has been thoroughly assessed following the practices in ontology engineering, is fully interoperable with many domain resources and is easy to extend
    corecore