
This is a repository copy of An integrated model checking toolset for kernel P systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/94858/

Version: Accepted Version

Proceedings Paper:
Gheorghe, M., Konur, S., Ipate, F. et al. (3 more authors) (2015) An integrated model
checking toolset for kernel P systems. In: Lecture Notes in Computer Science. 16th
International Conference, CMC 2015, 17-21 August 2015, Valencia, Spain. Springer , pp.
153-170. ISBN 9783319284743

https://doi.org/10.1007/978-3-319-28475-0_11

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-28475-0_11.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

An Integrated Model Checking Toolset for Kernel P

Systems

Marian Gheorghe1, Savas Konur1, Florentin Ipate2,3, Laurentiu Mierla2,3, Mehmet E. Bakir4,
and Mike Stannett4

1 School of Electrical Engineering and Computer Science, University of Bradford
Bradford BD7 1DP, UK

{m.gheorghe, s.konur}@bradford.ac.uk
2 Department of Computer Science, University of Bucharest

Str. Academiei nr. 14, 010014, Bucharest, Romania
florentin.ipate@ifsoft.ro, laurentiu.mierla@gmail.com

3 Department of Computer Science, University of Pitesti
Str. Targul din Vale, nr.1, 110040 Pitesti, Arges, Romania
4 Department of Computer Science, University of Sheffield

Sheffield, S1 4DP, UK
mebakir1@sheffield.ac.uk

Abstract. P systems are the computational models introduced in the context of membrane
computing, a computational paradigm within the more general area of unconventional com-
puting. Kernel P (kP) systems are defined to unify the specification of different variants
of P systems, motivated by challenging theoretical aspects and the need to model differ-
ent problems. kP systems are supported by a software framework, called kPWorkbench,
which integrates a set of related simulation and verification methodologies and tools. In
this paper, we present an extension to kPWorkbench with a new model checking frame-
work supporting the formal verification of kP system models. This framework supports both
LTL and CTL properties. To make the property specification an easier task, we propose a
property language, composed of natural language statements. We demonstrate our proposed
methodology with an example.

1 Introduction

Membrane computing is a computational paradigm, within the more general area of unconventional
computing [29], inspired by the structure and behaviour of eukaryotic cells. The formal models
introduced in this context are called membrane systems or P systems. After their introduction
[27], membrane systems have been widely investigated for computational properties and complexity
aspects, but also as a model for various applications [28]. The introduction of different variants of
P systems has been motivated by challenging theoretical aspects, but also by the need to model
different problems. An account of the theoretical developments is presented in [28], a set of general
applications can be found in [6], whereas specific applications in systems and synthetic biology
are provided in [11, 24, 20] and some of the future challenges are presented in [15]. More recently,
applications in optimisations and graphics [16] and synchronisation of distributed systems [9] have
been developed.

In many cases the specification of a certain system requires features, constraints or types of
behaviour which are not always provided by a single formal model. It is very helpful to have some
flexibility with modelling approaches. This flexibility might come from the way new features can
be added or old ones are redefined. This approach might lead to a proliferation of various variants
of the model. Software tools supporting the most used P system models have been conceived. They

2 Gheorghe et al.

come with a set of specification languages, known generically as P–Lingua [26]. P–Lingua aims to
keep the syntax as close as possible to the original models and provides a simulation platform for
all these models and a consistent user interface environment, called MeCoSim [25].

An alternative approach has been considered, by defining a specification language that allows
to relatively easily specify the most utilised P system models. The newly defined concept of kernel
P systems (kP systems) has been introduced in order to provide a theoretical support for this
language. A revised version of the model and the specification language can be found in [12] and
its usage to specify the 3-colouring problem and a comparison to another solution provided in a
similar context [8], is described in [14]. The kP systems have been also used to specify and analyse,
through formal verification, synthetic biology systems, e.g. genetic gates [22, 21].

Kernel P systems are supported by a software framework, kPWorkbench, which integrates
a set of related simulation and verification methodologies and tools. In this paper, we present a
new model checking framework that we have developed in support of formal verification of kernel
P system models. The framework supports both LTL and CTL properties by making use of the
Spin and NuSMV model checkers. To make the property specification an easier task, we propose
a property language, composed of natural language statements. We demonstrate our proposed
methodology on the subset sum problem.

The paper consists of five sections. Section 2 introduces the basic concepts related to kP systems.
Section 3 discusses the previous model checking approach, and presents the new model checking
methodology. Section 4 applies our proposed methodology to an instance of the subset sum problem.
Section 5 briefly discusses the applicability of our approach to the analysis of biological systems.
Finally, Section 6 draws conclusions and provides some future research directions.

2 Kernel P Systems

A kernel P system is a formal model that uses some well-known features of existing P systems
and also includes some new concepts and, more importantly, it provides a coherent framework
integrating all these elements. So, it can be considered as a unifying framework allowing to express
different variants of P systems within the same formalism [12, 10, 2].

2.1 kP–Lingua

The kP system models are described in a machine readable language, called kP–Lingua [10]. Below,
we illustrate the kP systems concepts with an example, which is slightly adjusted from [10, 2].

Example 1. A type definition in kP–Lingua.

type C1 {

choice {

> 2b : 2b -> b, a(C2) .

b -> 2b .

}

}

type C2 {

choice {

a -> a, {b, 2c}(C1) .

}

}

m1 {2x, b} (C1) - m2 {x} (C2) .

An Integrated Model Checking Toolset for Kernel P Systems 3

Above, C1, C2 denote two compartment types, which are instantiated as m1, m2, respectively. m1
starts with the initial multiset 2x, b and m2 starts with x. The rules of C1 are chosen non-
deterministically, only one at a time – this is achieved by the use of the key word choice. The first
rule is fired only when its guard becomes true; in other words, only when the current multiset has
at least three b’s. This rule also sends an a to the instance of C2 that is linked. In the type C2,
there is only one rule to be fired, which happens only when there is an a in the compartment C1.

2.2 kPWorkbench

The specifications written in kP–Lingua are supported by a software platform, kPWorkbench,
which integrates a set of tools and translators that bridge several target specifications that we
employ for kP system models, written in kP-Lingua. kPWorkbench permits simulation and
formal verification of kP system models using several simulation and verification tools and methods.

The framework features a native simulator [3, 23], allowing the simulation of kP system mod-
els. In addition, it also integrates the Flame simulator [7], a general purpose large scale agent
based simulation environment, based on a method that allows to express kP systems as a set of
communicating X-machines [17].

kPWorkbench’s model checking environment permits the formal verification of kernel P sys-
tem models. The framework supports both Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL) properties by making use of the Spin [18] and NuSMV [5] model checkers. In order to
facilitate the formal specification, kPWorkbench features a property language, called kP-Queries,
comprising a list of natural language statements representing formal property patterns, from which
the formal syntax of the Spin and NuSMV formulas are automatically generated.

3 Verification of kP systems

The application scope of P systems has recently broadened from contextual grammars to synthetic
biology. This has unsurprisingly increased the efforts for establishing formal verification, in partic-
ular model checking, methods and methodologies for various P systems [19, 13, 4]. These successful
attempts were mainly concerned with specific variants bound to an array of constraints, e.g. a
limited feature set and a basic set of properties.

However, the efforts for a comprehensive, integrated and automated verification approach for
general and unified languages, e.g. kP systems, are limited. This is mainly due to the computational
challenges imposed by such formalisms. These bring in a lot of complications as they feature a dy-
namic structure by preserving the structure changing rules such as membrane division, dissolution
and link creation/destruction. A state defined in this expansive context is consequently variable in
size. It is, however, a challenging task to find the proper projections of such complex abstractions
in model checking tools, as they require a fixed sized pre-allocated data model.

3.1 Previous Approach

In [10] we presented our initial efforts towards an integrated model checking approach, which
permits formal properties to be verified against kP system models, specified in kP-Lingua, using
the Spin model checker. The kP-Lingua representations of the models are automatically translated
into the Spin’s modelling language Promela. In order to ease the intricate and complex process
of building logical formulas, the approach also features a natural language query (NLQ) tool,
automatically converting predefined natural language queries into the corresponding Promela

representation of temporal logic (LTL) formulas, through graphical user interface (GUI) elements.

4 Gheorghe et al.

Property Pattern Language Construct LTL formula CTL formula

Next next p X p EX p

Existence eventually p F p EF p

Absence never p ¬(F p) ¬(EF p)
Universality always p G p AG p

Recurrence infinitely-often p G F p AG EF p

Steady-State steady-state p F G p AF AG p

Until p until q p U q A (p U q)
Response p followed-by q G (p → F q) AG (p → EF q)
Precedence q preceded-by p ¬(¬p U (¬p ∧ q)) ¬(E (¬p U (¬p ∧ q)))

Table 1: The LTL and CTL property constructs currently supported by the kP-Queries file

In this approach, a strategy is devised to find a projection and mapping between a kP-Lingua
model and the Promela representation. For some entities, e.g. multiset of objects, compartments,
guards, rules, etc., finding a direct correspondence is possible. However, concepts such as maximal
parallelism and membrane division are more difficult to deal with. To handle such cases, the
following solution is devised [10]: “We collapse individual instructions (to atomic blocks) to the
highest degree permitted by Spin, minimizing the so-called intermediate state space which is
irrelevant to a P system computation; and secondly, we appoint the states relevant to our model
explicitly, using a global flag (i.e. a Boolean variable), raised when all processes have completed a
computational step. Hence, we make a clear distinction between states that are pertinent to the
formal investigation and the ones which should be discarded. This contrast is in turn reflected by
the temporal logic formulae, which require adjustment to an orchestrated context where only a
narrow subset of the global state space is pursued.”

Although this approach employs useful strategies for both automatic translation of models and
properties, it has some drawbacks: (i) It reformulates LTL properties into their corresponding
Promela specifications. The translation requires introducing some special predicates into the
state expressions. This results in long and complex state expressions, and hence formulas, which
require manual manipulation of the corresponding translation in order to build complex queries
with nested temporal operators. (ii) It only considers the use of Spin model checker and hence only
focuses on verifying LTL properties. Since there is no CTL model checker, e.g. NuSMV, integrated
into the tool, we cannot verify CTL properties. (iii) According to some user feedbacks, the use of
the NLQ tool has not been very practical. The tool has two user interfaces: one for constructing
state expressions and one for constructing the actual properties. A property building task requires
traversing between two interfaces, causing usability inconveniences.

3.2 The New Approach

To tackle these drawbacks, a new model checking environment for kPWorkbench has been de-
veloped, including a property language (with an editor) for the specification of queries1 to be
verified against kP-Lingua models. An EBNF grammar for this language is defined for the most
common property patterns and a parser supporting the new property specification language has
been implemented.

The property language editor interacts with the kP-Lingua model in question and allows users
to directly access the native elements in the model, which results in less verbose and shorter state
expressions, and hence more comprehensible formulas. These features and the natural language

1 In the paper, we use the terms property and query interchangeably.

An Integrated Model Checking Toolset for Kernel P Systems 5

Pattern Spin – LTL Translation NuSMV – LTL Translation NuSMV – CTL Translation

Next ltl p1 { X (!pInS U (p && pInS)) } LTLSPEC X p SPEC EX p

Existence ltl p1 { <> (p && pInS) } LTLSPEC F p SPEC EF p

Absence ltl p1 { !(<> (p && pInS)) } LTLSPEC !(F p) SPEC !(EF p)

Universality ltl p1 { [] (p || pInS) } LTLSPEC G p SPEC AG p

Recurrence ltl p1 { [] (<> (p && pInS) || !pInS) } LTLSPEC G (F p) SPEC AG (EF p)

Steady-State ltl p1 { <> ([] (p || !pInS) && pInS) } LTLSPEC F (G p) SPEC AF (AG p)

Until ltl p1 { (p || !pInS) U (q && pInS) } LTLSPEC p U q SPEC A [p U q]

Response ltl p1 { [] ((p -> <> (q && pInS)) || !pInS) } LTLSPEC G (p -> F q) SPEC AG (p -> EF q)

Precedence ltl p1 { !((!p || !pInS) U (!p && q && pInS)) } LTLSPEC !(!p U (!p & q)) SPEC !(E [!p U (!p & q)])

Table 2: The LTL and CTL property constructs currently supported by the kP-Queries file

like syntax of the language make the property construction much easier compared to our previous
approach.

The new model checking environment supports both Spin and NuSMV model checkers. The
translations from a kP-Lingua representation to the corresponding Spin and NuSMV inputs are
automatically performed. The property language allows specifying the target logical formalism
(i.e. LTL and CTL) for the different properties, without placing a requirement on a specific model
checker, the same set of properties being able to be reused in various model checking experiments.

Targeting flexibility, expressivity and model checking language independence, the new verifi-
cation approach for kP-Lingua models enriches kPWorkbench with a mechanism for defining
kP-Queries files, which are especially designed for the purpose of being used to verify kP-Lingua
models. The format of kP-Queries file is supported by an intuitive, coherent and integrated prop-
erty specification language, allowing the construction of queries involving kP-Lingua model entities
and targeting the LTL and CTL formalisms.

The new introduced property specification language aims to be independent from any target
model checking language, yet integrating elements from LTL and CTL logical formalisms in a
uniform way, such that property patterns from a set of most commonly used ones are considered
in conjunction with two special keywords, ltl and ctl, giving the queries a formal context to be
represented in. This approach also addresses one other limitation of the previous one, allowing the
specification of nested properties in constructing more complex queries. Complex state expressions
can be formulated by using relational and Boolean operators, while the only currently supported
atomic operands are the object multiplicities of kP-Lingua model membranes. Table 1 summarizes
the currently considered property patterns, together with the corresponding language construct,
LTL and CTL representations.

Aiming for a generic and reusable property language, kP-Queries files do not embody any con-
structs that pertain to specific model checking languages, nor do they specify the target translation
language the queries will be represented in. kP-Queries can be associated with kP-Lingua models, in
conjunction with them serving as input for the translation engines defined in kPWorkbench. The
properties specified in a formalism which is not supported by the target model checking language
are simply discarded, only the appropriate ones being considered for translation.

kPWorkbench currently integrates translation mechanisms for two targets: Promela and
Smv, the modeling languages of the model checkers Spin and NuSMV, respectively. While both
Promela and Smv allow the specification of LTL properties, the latter also supports the CTL
formalism.

As kP systems modelled in kP-Lingua are automatically translated into a computationally
equivalent representation targeting a model checking language, the verification procedure should
take into account one subtle difference concerning the modelling procedure and the underlying

6 Gheorghe et al.

formalism of the two computationally equivalent models. The translation of queries specified into
the kP-Queries files needs to be formulated in such a way that we target only P system states (i.e.
the states in which the computational step of the P system is completed), regardless of the various
intermediate states required by the formalism of the translated model. This is the case for the
translations targeting the Spin model checker, as the translated model and properties are required
to accommodate a special variable and state expressions over it, respectively. Namely, each LTL
formula should be translated to Spin using a special predicate, pInS, showing that the current Spin
state represents a P system configuration (the predicate is true when a Spin configuration reaches a
P system state on the execution path) or represents an intermediate state (it is false if intermediary
steps are executed) – see [19] for the theoretical validation of this translation. On the other hand,
the translations targeting NuSMV does not require a special treatment from the point of view of
differentiating between source and destination model states. Table 2 depicts the translations of the
above considered property patterns, targeting both Spin and NuSMV, emphasizing also the use
of the special Boolean variable pInS.

The implementation of the domain specific language used by kP-Queries files relies on ANTLR
(ANother Tool for Language Recognition) [1] for its state of the art parser generator capabilities.
The EBNF grammar of the property specification language serves as input for ANTLR in order
to automatically generate the corresponding syntactical and semantic analyzers, together with
the necessary data structures for representing the resulted abstract syntax tree (AST) and the
underlying functionality of traversing it.

As the abstract syntax tree resulted from the parsing process directly reflects the structure
of the grammar and its semantic model, a well defined domain model layer was introduced for
supporting the internal representation of the data, thus decoupling the functionality relying on
this data structure from the underlaying components of the parsing framework. By projecting
the abstract syntax tree representation into a semantically equivalent internal data structure, a
separation of concerns is achieved with the benefit of gaining greater flexibility in being able
to independently change the parsing strategy from the property translation functionality. The
projection of the abstract syntax tree to the internal data structure representation is achieved
by the implementation of a model builder mechanism which is able to traverse the hierarchical
representation of the AST, having at the same time the responsibility of semantically validating
the kP-Queries files.

The new model checking module for kPWorkbench is especially designed around the concepts
of maintainability and extensibility, following the SOLID programming principles [31] in achieving
this goal. The entities composing the internal data representation, besides of playing the role of
data transfer objects (DTO), are augmented with a minimal yet very powerful functionality for
allowing them to be treated in an uniform way. The internal data structure is a tree-like hierarchical
representation, augmented with the behavior required by the Visitor design pattern [32], aiming for
separation of concerns (i.e. separating the translation strategies form the internal data structure
they operate on) and following the open/closed principle (i.e. the set of translation strategies is
open to be extended while the internal data structure is closed to further modifications).

The design pattern used in the model checking module implementation treats the nodes from
the internal data representation as visitable entities, capable of accepting visitors and requests to
visit them. Each visitor implementation holds specific functionality for visiting every single node.
The model checking module implements its property translation strategies as visitors, being capable
of translating every node of the internal representation of the properties into the corresponding
form required by the target model checking language. By using this mechanism, each translation
strategy implementation is independent, localized and coherent. Furthermore, a Singleton [30]
implementation of a translation manager is able to receive an internal representation of a property

An Integrated Model Checking Toolset for Kernel P Systems 7

together with a translation target and to perform the translation of the property by instantiating
the corresponding visitor and delegate it to visit the property data structure.

4 Case Studies

4.1 The Subset Sum problem

This case, the subset sum problem, will illustrate most of the features of the kP–Lingua, the
presence of compartments, guarded rules and flexible execution strategies. The subset sum problem
is stated as follows [2]:

Given a finite set A = {a1, . . . , an}, of n elements, where each element ai has an associated weight,
wi, and a constant k, it is requested to determine whether or not there exists a subset B ⊆ A such
that w(B) = k, where w(B) =

∑
ai∈B wi. The following kP-Lingua code represents a model, where

n = 7, w(A) = {3, 25, 8, 23, 5, 14, 30} and k = 55.

type Main {

choice {

= 55x: a -> {yes, halt} (Output) .

> 55x: a -> # .

}

choice {

!r1: a -> [a, r1][3x, a, r1] .

!r2: a -> [a, r2][25x, a, r2] .

!r3: a -> [a, r3][8x, a, r3] .

!r4: a -> [a, r4][23x, a, r4] .

!r5: a -> [a, r5][5x, a, r5] .

!r6: a -> [a, r6][14x, a, r6] .

!r7: a -> [a, r7][30x, a, r7] .

}

}

type Output {

step -> 2step .

!yes: 9step -> no, halt .

}

main {a} (Main) - output {step} (Output) .

The model has two compartment types, Main and Output, and two compartments output, and
main. The first rule of Main is a rewrite communication rule, which is guarded by {= 55x}. If this
guard is satisfied, it will produce a yes and a halt object in Output, which is a positive answer
for the problem. The second rule is a structure changing rule which results in the compartment
dissolution. These two rules are encapsulated within a choice block, which means that at each
step only one of the rules is selected and executed, and the selection is non-deterministic. The
second choice block consists of seven division rules, each of which is guarded with !ri, which aims
to prevent any of the successor compartment to execute the same rule. Each rule divides the active
compartment into two new compartments of the type Main. New compartments will inherit the

8 Gheorghe et al.

Prop. Pattern (i) Informal, (ii) Formal, (iii) Spin – LTL, (iv) NuSMV – LTL and (v) NuSMV – CTL Representations

1 Response

(i) The execution of the computation will be followed by a halt
(ii) output.halt = 0 followed-by output.halt >0
(iii) ltl prop1 { [] ((m1[0].x[2] == 0 -><>(m1[0].x[2] >0 && state == step complete) ||

state != step complete) || state != step complete) }
(iv) LTLSPEC G (output.halt = 0 ->F output.halt >0)

(v) SPEC AG (output.halt = 0 ->EF output.halt >0)

2 Existence

(i) The computation will eventually halt
(ii) eventually output.halt >0
(iii) ltl prop1 {<>(m1[0].x[2] >0 && state == step complete)}
(iv) LTLSPEC F output.halt >0

(v) SPEC EF output.halt >0

3 Until

(i) The computation will eventually halt with either a ‘yes’ or ‘no’ result
(ii) output.halt = 0 until (output.halt >0 and (output.yes >0 or output.no >0))
(iii) ltl prop1 { (m1[0].x[2] == 0 || state != step complete) U ((m1[0].x[2] >0

&& (m1[0].x[3] >0 || m1[0].x[1] >0)) && state == step complete) }
(iv) LTLSPEC output.halt = 0 U (output.halt >0 & (output.yes >0 | output.no >0))

(v) SPEC A [output.halt = 0 U (output.halt >0 & (output.yes >0 | output.no >0))]

4 Until

(i) The computation will halt within n+2 steps (for n=7)
(ii) (output.halt = 0 and output.step <= 9) until (output.halt >0 and output.step <=9)
(iii) ltl prop1 { ((m1[0].x[2] == 0 && m1[0].x[0] <= 9) || state != step complete) U

((m1[0].x[2] > 0 && m1[0].x[0] <= 9) && state == step complete) }
(iv) (output.halt = 0 & output.step <= 9) U (output.halt > 0 & output.step <= 9)

(v) A [(output.halt = 0 & output.step <= 9) U (output.halt > 0 & output.step <= 9)]

5 Steady-state

(i) The system will halt in the steady-state with a ‘yes’ or ‘no’ result
(ii) steady-state ((output.yes >0) or (output.no >0) implies (output.halt >0))
(iii) ltl prop1 { <>([] (((m1[0].x[3] >0 || m1[0].x[1] >0) ->m1[0].x[2] >0) ||

state != step complete) && state == step complete) }
(iv) LTLSPEC F (G ((output.yes >0 | output.no >0) ->output.halt >0))

(v) SPEC AF (AG ((output.yes >0 | output.no >0) ->output.halt >0))

6 Absence

(i) The computation will never halt with a ‘no’ result
(ii) never (output.halt >0 and (output.yes = 0 and output.no >0))
(iii) ltl prop1 { !(<>((m1[0].x[2] >0 && (m1[0].x[3] == 0 && m1[0].x[1] >0))

&& state == step complete)) }
(iv) LTLSPEC !(F (output.halt >0 & (output.yes = 0 & output.no >0)))

(v) SPEC !(EF (output.halt >0 & (output.yes = 0 & output.no >0)))

7 Existence

(i) A ‘yes’ result is eventually observed within no more than three steps
(ii) eventually (output.yes >0 and output.step <= 3)
(iii) ltl prop1 { <>((m1[0].x[3] >0 && m1[0].x[0] <= 3) && state == step complete) }
(iv) LTLSPEC F (output.yes >0 & output.step <= 3)

(v) SPEC EF (output.yes >0 & output.step <= 3)

8 Existence

(i) A ‘yes’ result is eventually observed after more than three steps
(ii) eventually (output.yes >0 and output.step >3)
(iii) ltl prop1 { <>((m1[0].x[3] >0 && m1[0].x[0] >3) && state == step complete) }
(iv) LTLSPEC F (output.yes >0 & output.step >3)

(v) SPEC EF (output.yes >0 & output.step >3)

9 Precedence

(i) A ‘yes’ result is always observed before a ‘no’ result
(ii) output.yes >0 preceded-by output.no >0
(iii) ltl prop1 { !((!(m1[0].x[3] >0) || state != step complete) U (!(m1[0].x[3] >0) &&

m1[0].x[1] >0 && state == step complete)) }
(iv) LTLSPEC !(!(output.yes >0) U (!(output.yes >0) & output.no >0))

(v) SPEC !(E [!(output.yes >0) U (!(output.yes >0) & output.no >0)])

Table 3: List of properties derived from the property language and their representations in different
formats.

An Integrated Model Checking Toolset for Kernel P Systems 9

multiset objects of their parent. In addition, the multiset objects on the right hand side of the
rule will pass to the corresponding child compartment. For example, if the first division rule is
selected, then the compartment will be divided into two new compartments and both will inherit
their parent objects. In addition, one of them will have the {a, r1} objects, while the other one
will have {3x, a, r1}.

The compartment type Output has been added just to collect the results. We have extended
the model to be able to produce a negative answer, no, if the system reaches its maximum number
of steps and has not produced a positive answer, yes, so far. Output has two rewriting rules: the
first rule increments the multiplicity of the step counter by one at each step, and the second rule
produces a halt and a no object, if a yes object has not been produced so far, and the step counter
is 9. In this case, both rules are executed (or at least the system attempts to execute both), in the
given order.

kPWorkbench automatically converts the kP-Lingua model into the corresponding input
languages of Spin, and NuSMV. In order to verify that the Subset Sum problem works as desired,
we have constructed a set of properties specified in kP-Queries, listed in Table 3. A subset of these
properties are verified in [10] using the model checker Spin using the old verification approach.
Here, we use the new procedure of verifying kP-Lingua models for investigating the validity of a
set of properties.

The applied pattern types are given in the second column of the table. For each property we
provide the following information; (i) informal description of each kP-Query, (ii) the formal kP-
Query, (iii) the translated form of the kP-Query into the Spin modelling language, Promela, and
into the (iv) CTL, and (v) LTL forms of the NuSMV specification. The results of all queries are
positive.

In the following, we briefly describe why all properties listed in the Table 3 are true. After all
division rules are applied, 27 = 128 compartments of the type Main are generated. The contents of
each compartment are determined by their ancestors. Here, we try to find out if any of the child
compartments includes 55 x objects. Since there are more than one compartment with exactly 55

x objects, the output produces a yes and a halt object. If none of the compartments included 55 x

objects, then the output would produce a no and a halt object (without producing a yes object).
Hence, a halt object is always produced. This explains why Properties 1, 2, 3, and 5 are true.
Property 4 is also true, since the algorithm is a faithful linear time solution and the computation
ends at most within n + 2 steps. Property 6 tests that there will never be a no object before a
yes object is produced. Since there is at least one child compartment which has 55 x, a yes will
be triggered first. Thus, a no object is never produced before it. In other words, a yes object is
always produced before a no object. Hence, Properties 6 and 9 are true. Property 7 is also true,
because after the first step, the division rules will be applied and a child compartment will be
created. Then, the child compartments that have 55 x will trigger a yes object in the output.
After the production of a yes object, it will remain inside the output compartment. This explains
why Property 8 returns true.

As illustrated in Table 3, the intuitive and coherent form of kP-Queries lead to relatively
short, yet natural language-like property specifications, which are independent from any specific
model checking language. This approach brings the flexibility of independently considering the
particularities of each model checker when translating properties, without the need to embody
any of the required aspects into the specification language of kP-Queries. Being associated to kP-
Lingua models, kP-Queries facilitates the construction of queries against the entities of the model
and automatically considering the translation of these entities without user interaction.

Furthermore, unlike the previous one, the new verification approach is not bound to the usage
of a graphical user interface. Although by using a GUI the property specification process is more
intuitive, it is considered more tedious by most users aiming to script and automate a verification

10 Gheorghe et al.

Prop. Pattern (i) Informal, (ii) Formal, (iii) Spin (LTL) Representations

1 Universality
(i) No more than one termination signal will be generated
(ii) always m.t <= 1
(iii) ltl prop { [] (c[0].x[t] <= 1 || state != step complete) }

2 Absence
(i) The system will never generate 15 as a square number
(ii) never m.s = 15
(iii) ltl prop { !(<> (c[0].x[s] == 15 && state == step complete)) }

3 Steady-state
(i) In the long run, the system will converge to a state in which, if the termination signal is generated,
no more a objects will be available
(ii) steady-state (m.a = 0 implies m.t = 1)
(iii) ltl prop { <> ([] ((c[0].x[a] == 0 -> c[0].x[t] == 1) || state != step complete) &&

state != step complete) }

Prop. Pattern (i) Informal, (ii) Formal, (iii) NuSMV (CTL) Representations

4 Existence
(i) The system will eventually consume all a objects, on some runs
(ii) eventually m.a = 0
(iii) SPEC EF m.a = 0

5 Existence
(i) On some runs the system will eventually halt
(ii) eventually m.t = 1
(iii) SPEC EF m.t = 1

6 Universality
(i) No more than one termination signal will be generated
(ii) always m.t <= 1
(iii) SPEC AG m.t <= 1

7 Absence
(i) The system will never generate 15 as a square number
(ii) never m.s = 15
(iii) SPEC !(EF m.s = 15)

8 Precedence
(i) The consumption of all a objects will always be preceded by a halting signal
(ii) m.a = 0 preceded-by m.t = 1
(iii) SPEC !(E [!(m.a = 0) U (!(m.a = 0) & m.t = 1)])

9 Response
(i) By starting the computation with at least one a object, on some runs the system will eventually
consume all of them
(ii) m.a >0 followed-by m.a = 0
(iii) SPEC AG (m.a > 0 -> EF m.a = 0)

10 Response
(i) A halting signal will always be followed by the consumption of all a objects
(ii) m.t = 1 followed-by m.a = 0
(iii) SPEC AG (m.t = 1 -> EF m.a = 0)

Table 4: List of properties derived from the property language and their representations in different
formats.

task. In order to address this usability problem, the process of using the new kPWorkbench

verification approach is also assisted by a simple GUI, guiding non-expert users through the entire
procedure, while empowering experienced users with a flexible and expressive mechanism for using
the verification framework from a command line interface or shell scripts.

4.2 Generating square numbers

We present below a kernel P systems model that generates square numbers (starting with 1) each
step. The multiplicity of object “s” is equal to the square number produced each step.

type main {

max {

= t: a -> {} .

< t: a -> a, 2b, s .

< t: a -> a, s, t .

< t: b -> b, s .

An Integrated Model Checking Toolset for Kernel P Systems 11

m0

m1 m2

m3

Fig. 1: The structure.

}

}

m {a} (main) .

An execution trace for this model can be visualised as follows:

a

a 2b s

a 4b 4s

a 6b 9s

...

kPWorkbench automatically converts the kP-Lingua model into the corresponding input
languages of the Spin, and NuSMV model checkers. In order to verify that the problem works
as desired, we have constructed a set of properties specified in kP-Queries, listed in Table 4. The
applied pattern types are given in the second column of the table. For each property we provide
the following information; (i) informal description of each kP-Query, (ii) the formal kP-Query,
(iii) the translated form of the kP-Query into the LTL specifications written in Spin modelling
language, and CTL specifications written in the NuSMV language. The results of all queries are
positive, as expected.

4.3 Broadcasting with acknowledgement

In this case study, we consider broadcasting with acknowledgement in ad-hoc networks. Each level
of nodes in the hierarchy has associated a unique type with communication rules to neighbouring
(lower and upper) levels. This is the only way we can simulate signalling with kP systems such
that we do not hard-wire the target membranes in communication rules, i.e. assume we do not
know how many child-nodes are connected to each parent as long as we group them by the same
type; evidently, this only applies to tree structures. The kP Systems model written in kP–Lingua
is given as follows:

type L0 {

max {

a -> b, a (L1), a (L2) .

}

}

type L1 {

max {

12 Gheorghe et al.

a, c -> c (L0) .

}

}

type L2 {

max {

a -> b, a (L3) .

b, c -> c (L0) .

}

}

type L3 {

max {

a, c -> c (L2) .

}

}

m0 {a} (L0) .

m1 {c} (L1) - m0 .

m2 {} (L2) - m0.

m3 {c} (L3) - m2 .

In order to verify that the model works as desired, we have verified some properties, presented
in Table 5. The results are positive, except Properties 1 and 5, as expected. These results confirm
the desired system behaviour.

5 Discussion

kP systems (and P systems in general) are a suitable formalism for modelling biological systems,
especially multi-cellular systems and molecular interactions taking place in different locations of liv-
ing cells. These non-deterministic models facilitate the qualitative analysis of such systems. Namely,
they allow one to describe all chains of reactions, observe various interactions between species and
determine various dependencies between molecules. In [22], two biological systems, the quorum
sensing in P. aeruginosas and the synthetic pulse generator, and in [21] some genetic Boolean
gates have been qualitatively analysed using the NuSMV and Spin model checkers. However, the
ideas and methodology presented in these papers were not fully automated. Our work presented
in this paper tackles this issue. The model checking framework now works in a fully automated
fashion and is integrated into the kPWorkbench platform. Thus, this work can be considered
progress on the conceptually presented methodology introduced in [22, 21].

6 Conclusions and Future Work

In this paper, we have presented a new model checking framework that we have developed in
support of formal verification of kP system models. It supports both LTL and CTL properties by
making use of the Spin and NuSMV model checkers. The new framework for kP-Lingua models
enriches kPWorkbench with a mechanism for defining kP-Queries files, which are especially
designed for the purpose of being used to verify kP-Lingua models. The format of kP-Queries

An Integrated Model Checking Toolset for Kernel P Systems 13

Prop. Pattern (i) Informal, (ii) Formal, (iii) Spin (LTL) Representations

1 Existence
(i) The terminal nodes will receive the broadcast message at the same time
(ii) eventually (m1.a >0 and m3.a >0)
(iii) ltl prop { <> ((c[1].x[a] > 0 && c[3].x[a] > 0) && state == step complete) }

2 Absence
(i) The root node will never receive an acknowledgement without sending a broadcast
(ii) never m0.a >0 and m0.c >0
(iii) ltl prop { !(<> ((c[0].x[a] > 0 && c[0].x[c] > 0) && state == step complete)) }

3 Response
(i) The node m2 will always receive the broadcast message before its child node (m3)
(ii) m2.a = 1 followed-by m3.a = 1
(iii) ltl prop { [] ((c[2].x[a] == 1 -> <> (c[3].x[a] == 1 && state == step complete)) ||

state != step complete) }

Prop. Pattern (i) Informal, (ii) Formal, (iii) NuSMV (CTL) Representations

4 Existence
(i) The node m1 will eventually receive the broadcast message
(ii) eventually m1.a >0
(iii) SPEC EF m1.a > 0

5 Existence
(i) The terminal nodes will receive the broadcast message at the same time
(ii) eventually m1.a >0 and m3.a >0
(iii) SPEC EF (m1.a > 0 & m3.a > 0)

6 Absence
(i) The root node will never receive an acknowledgement without sending a broadcast
(ii) never m0.a >0 and m0.c >0
(iii) SPEC !(EF (m0.a > 0 & m0.c > 0))

7 Response
(i) The node m2 will always receive the broadcast message before its child node (m3)
(ii) m2.a = 1 followed-by m3.a = 1
(iii) SPEC AG (m2.a = 1 -> EF m3.a = 1)

8 Steady-state
(i) In the long run, the system will converge to a state in which the root node will have been received
the acknowledgement from the all terminal nodes and no more broadcasts will occur
(ii) steady-state (m0.c = 2 implies m0.a = 0)
(iii) SPEC AF (AG (m0.c = 2 -> m0.a = 0))

9 Steady-state
(i) In the long run, the system will converge to a state in which the root node will have been received
the acknowledgement from all the terminal nodes and no more acknowledgements will occur
(ii) steady-state (m0.c = 2 implies (m1.c = 0 and m3.c = 0))
(iii) SPEC AF (AG (m0.c = 2 -> (m1.c = 0 & m3.c = 0)))

Table 5: List of properties derived from the property language and their representations in different
formats.

file is supported by an intuitive, coherent and integrated property specification language, allowing
the construction of queries involving kP-Lingua model entities and targeting the LTL and CTL
formalisms. We have demonstrated our proposed methodology on the subset sum problem, by
verifying a set of properties constructed in kP-Queries.

Recently, in addition to the properties presented in the paper, we have investigated and proved
more complex and interested properties for the three examples provided. For example, in the square
numbers generator, by introducing a new symbol to denote the iteration step and modifying the
rules so that this is incremented whenever s is incremented from a (in rules (2) and (3) of type
Main), we can verify that s equals the square of the iteration step. In the subset sum example,
we cannot verify anything related to newly created compartments as we cannot refer to them.
One way of addressing this problem would be to map somehow the compartment creation into a
corresponding symbol in the Output compartment. For example, when a new compartment of type
Main is created and this contains 3 elements (the first rule of the second choice of compartment
Main), a rule which will send a r1 into Output whenever a compartment with 3 elements is created
(has both 3 x and r1) will be added. We can then verify that there is a path for which output.r1

> 0 (this means in Output an r1 has been received after the compartment Main with 3 elements
has been created).

14 Gheorghe et al.

We aim to extend the current implementation by considering more complex queries over kP-
Lingua model entities, offering the verification tool greater power and expressivity, and also by
investigating how properties involving the active membranes can be formulated and proved. We
also aim to evaluate the methodology with several other case studies to better understand its
potential and limitations more generally. In this respect, we will expand the synthetic biology
investigations [22, 21] and develop verification strategies for some synchronisation [9] and graphics
[16] problems.

Acknowledgements.

SK and MG acknowledge the support provided for synthetic biology research by EPSRC ROAD-
BLOCK (project number: EP/I031812/1). The work of FI and LM was supported by a grant of
the Romanian National Authority for Scientific Research, CNCS-UEFISCDI (project number: PN-
II-ID-PCE-2011-3-0688). MB is supported by a PhD studentship provided by the Turkey Ministry
of Education.

References

1. ANTLR website. url: http://www.antlr.org.
2. M. E. Bakir, F. Ipate, S. Konur, L. Mierlă, and I. Niculescu. Extended simulation and verification

platform for kernel P systems. In 15th International Conference on Membrane Computing, volume
8961 of LNCS, pages 158–168. Springer, 2014.

3. M. E. Bakir, S. Konur, M. Gheorghe, I. Niculescu, and F. Ipate. High performance simulations of
kernel P systems. In Proceedings of the 2014 IEEE 16th International Conference on High Performance
Computing and Communication, HPCC’14, pages 409–412, Paris, France, 2014.

4. J. Blakes, J. Twycross, S. Konur, F. Romero-Campero, N. Krasnogor, and M. Gheorghe. Infobiotics
workbench: A P systems based tool for systems and synthetic biology. In Applications of Membrane
Computing in Systems and Synthetic Biology, volume 7 of Emergence, Complexity and Computation,
pages 1–41. Springer, 2014.

5. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. NuSMV version 2: An open source tool for symbolic model checking. In Proc. Interna-
tional Conference on Computer-Aided Verification (CAV 2002), volume 2404 of LNCS, pages 359–364,
Copenhagen, Denmark, 2002. Springer.

6. G. Ciobanu, M. J. Pérez-Jiménez, and G. Păun, editors. Applications of Membrane Computing.
Springer, 2006.

7. S. Coakley, M. Gheorghe, M. Holcombe, S. Chin, D. Worth, and C. Greenough. Exploitation of high
performance computing in the FLAME agent-based simulation framework. In Proceedings of the IEEE
14th International Conference on High Performance Computing and Communication, HPCC’12, pages
538–545, Liverpool, UK, 2012.

8. D. Dı́az-Pernil, M. A. Gutiérrez-Naranjo, and M. J. Pérez-Jiménez. A uniform family of tissue P
systems with cell division solving 3-COL in a linear time. Theoretical Computer Science, 404:76–87,
2008.

9. M. J. Dinneen, K. Yun-Bum, and R. Nicolescu. Faster synchronization in P systems. Natural Com-
puting, 11(4):637–651, 2012.

10. C. Dragomir, F. Ipate, S. Konur, R. Lefticaru, and L. Mierlă. Model checking kernel P systems. In 14th
International Conference on Membrane Computing, volume 8340 of LNCS, pages 151–172. Springer,
2013.

11. P. Frisco, M. Gheorghe, and M. J. Pérez-Jiménez, editors. Applications of Membrane Computing in
Systems and Synthetic Biology. Springer, 2014.

12. M. Gheorghe, F. Ipate, C. Dragomir, L. Mierlă, L. Valencia-Cabrera, M. Garćıa-Quismondo, and M. J.
Pérez-Jiménez. Kernel P systems - version 1. In 11th Brainstorming Week on Membrane Computing,
pages 97–124. Fénix Editora, 2013.

An Integrated Model Checking Toolset for Kernel P Systems 15

13. M. Gheorghe, F. Ipate, R. Lefticaru, and C. Dragomir. An integrated approach to P systems formal
verification. In Membrane Computing, volume 6501 of LNCS, pages 226–239. Springer, 2011.

14. M. Gheorghe, F. Ipate, R. Lefticaru, M. J. Pérez-Jiménez, A. Ţurcanu, L. Valencia-Cabrera, M. Garćıa-
Quismondo, and L. Mierlă. 3-Col problem modelling using simple kernel P systems. Int. Journal of
Computer Mathematics, 90(4):816–830, 2012.

15. M. Gheorghe, G. Păun, M. J. Pérez-Jiménez, and G. Rozenberg. Research frontiers of membrane
computing: Open problems and research topics. International Journal of Foundations of Computer
Scence, 24:547–624, 2013.

16. G. L. Gimel’farb, R. Nicolescu, and S. Ragavan. P system implementation of dynamic programming
stereo. Journal of Mathematical Imaging and Vision, 47(1–2):13–26, 2013.

17. M. Holcombe. X-machines as a basis for dynamic system specification. Softw. Eng. J., 3(2):69–76,
1988.

18. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Soft. Eng., 23(5):275–295, 1997.
19. F. Ipate, R. Lefticaru, and C. Tudose. Formal verification of P systems using Spin. International

Journal of Foundations of Computer Science, 22(1):133–142, 2011.
20. S. Konur and M. Gheorghe. A property-driven methodology for formal analysis of synthetic biology

systems. In IEEE/ACM Transactions on Computational Biology and Bioinformatics, volume 12, pages
360–371, 2015.

21. S. Konur, M. Gheorghe, C. Dragomir, F. Ipate, and N. Krasnogor. Conventional verification for
unconventional computing: a genetic XOR gate example. Fundamenta Informaticae, 134(1-2):97–110,
2014.

22. S. Konur, M. Gheorghe, C. Dragomir, L. Mierlă, F. Ipate, and N. Krasnogor. Qualitative and quan-
titative analysis of systems and synthetic biology constructs using P systems. ACS Synthetic Biology,
4(1):83–92, 2015.

23. S. Konur, M. Kiran, M. Gheorghe, M. Burkitt, and F. Ipate. Agent-based high-performance simulation
of biological systems on the Gpu. In Proceedings of the 2015 IEEE 15th International Conference on
High Performance Computing and Communication, HPCC’15, New York, USA, 2015.

24. S. Konur, C. Ladroue, H. Fellermann, D. Sanassy, L. Mierlă, F. Ipate, S. Kalvala, M. Gheorghe, and
N. Krasnogor. Modeling and analysis of genetic boolean gates using the infobiotics workbench. In
Proceedings of Verification of Engineered Molecular Devices and Programs, VEMDP’14, pages 26–37,
Vienna, Austria, 2014.

25. MeCoSim website. url: http://www.p-lingua.org/mecosim/.
26. P-Lingua website. url: http://www.p-lingua.org.
27. G. Păun. Computing with membranes. Journal of Computer and System Sciences, 61(1):108–143,

2000.
28. G. Păun, G. Rozenberg, and A. Salomaa, editors. The Oxford Handbook of Membrane Computing.

Oxford University Press, 2010.
29. G. Rozenberg, T. Bäck, and J. N. Kok, editors. Handbook of Natural Computing. Springer, 2012.
30. Singleton. url: http://en.wikipedia.org/wiki/Singleton pattern.
31. SOLID. url: http://en.wikipedia.org/wiki/SOLID (object-oriented design).
32. Visitor design pattern. url: http://en.wikipedia.org/wiki/Visitor pattern.

