168 research outputs found

    High Field Anomalies of Equilibrium and Ultrafast Magnetism in Rare-Earth-Transition Metal Ferrimagnets

    Full text link
    Magneto-optical spectroscopy in fields up to 30 Tesla reveals anomalies in the equilibrium and ultrafast magnetic properties of the ferrimagnetic rare-earth-transition metal alloy TbFeCo. In particular, in the vicinity of the magnetization compensation temperature, each of the magnetizations of the antiferromagnetically coupled Tb and FeCo sublattices show triple hysteresis loops. Contrary to state-of-the-art theory, which explains such loops by sample inhomogeneities, here we show that they are an intrinsic property of the rare-earth ferrimagnets. Assuming that the rare-earth ions are paramagnetic and have a non-zero orbital momentum in the ground state and, therefore, a large magnetic anisotropy, we are able to reproduce the experimentally observed behavior in equilibrium. The same theory is also able to describe the experimentally observed critical slowdown of the spin dynamics in the vicinity of the magnetization compensation temperature, emphasizing the role played by the orbital momentum in static and ultrafast magnetism of ferrimagnets

    Possibilities, patience, and perserverance:A preliminary analysis of the needs and experiences of ten older adults regarding their use of digital health technology

    Get PDF
    The COVID-19 pandemic created the need to use digital health resources (DR), as they sometimes were the only option to receive healthcare or social interaction. The aim of this research is to provide insight into the experiences during the lockdown of older people using DR for health in general and the points of improvement they see. A qualitative study was carried out using semi-structured interviews with older persons by telephone. A total of 10 older adults participated, with a median age of 78 years, the majority having a chronic disease. The most important themes for motivation to use health-related DR were ‘urgency’ and ‘usefulness’. Experiences with DR were related to the themes ‘human contact’ and ‘communication’, which were experienced by respondents as facilitated by DR, and ‘time and energy’, which was two-sided. Additionally, most older persons worried about accessibility of DR by all older persons and the support needed. In conclusion, older persons are convinced of the urgency and the usefulness of digital technology for health and healthcare. Time and energy constraints can be alleviated by using DR on the one hand, but this can also be challenging if older persons are less digitally skilled or lack digital literacy. Good and sustained human support is therefore mandatory

    Micropatterned Electrostatic Traps for Indirect Excitons in Coupled GaAs Quantum Wells

    Full text link
    We demonstrate an electrostatic trap for indirect excitons in a field-effect structure based on coupled GaAs quantum wells. Within the plane of a double quantum well indirect excitons are trapped at the perimeter of a SiO2 area sandwiched between the surface of the GaAs heterostructure and a semitransparent metallic top gate. The trapping mechanism is well explained by a combination of the quantum confined Stark effect and local field enhancement. We find the one-dimensional trapping potentials in the quantum well plane to be nearly harmonic with high spring constants exceeding 10 keV/cm^2.Comment: 21 pages, 6 figures, submitted to Phys. Rev.

    Asymptotic analysis of Emden-Fowler type equation with an application to power flow models

    Get PDF
    Emden-Fowler type equations are nonlinear differential equations that appear in many fields such as mathematical physics, astrophysics and chemistry. In this paper, we perform an asymptotic analysis of a specific Emden-Fowler type equation that emerges in a queuing theory context as an approximation of voltages under a well-known power flow model. Thus, we place Emden-Fowler type equations in the context of electrical engineering. We derive properties of the continuous solution of this specific Emden-Fowler type equation and study the asymptotic behavior of its discrete analog. We conclude that the discrete analog has the same asymptotic behavior as the classical continuous Emden-Fowler type equation that we consider

    Asymptotic analysis of Emden-Fowler type equation with an application to power flow models

    Get PDF
    Emden-Fowler type equations are nonlinear differential equations that appear in many fields such as mathematical physics, astrophysics and chemistry. In this paper, we perform an asymptotic analysis of a specific Emden-Fowler type equation that emerges in a queuing theory context as an approximation of voltages under a well-known power flow model. Thus, we place Emden-Fowler type equations in the context of electrical engineering. We derive properties of the continuous solution of this specific Emden-Fowler type equation and study the asymptotic behavior of its discrete analog. We conclude that the discrete analog has the same asymptotic behavior as the classical continuous Emden-Fowler type equation that we consider

    Anharmonic magnetic deformation of self-assembled molecular nanocapsules

    Get PDF
    High magnetic fields were used to deform spherical nanocapsules, self-assembled from bola-amphiphilic sexithiophene molecules. At low fields the deformation -- measured through linear birefringence -- scales quadratically with the capsule radius and with the magnetic field strength. These data confirm a long standing theoretical prediction (W. Helfrich, Phys. Lett. {\bf 43A}, 409 (1973)), and permits the determination of the bending rigidity of the capsules as (2.6±\pm0.8)×10−21\times 10^{-21} J. At high fields, an enhanced rigidity is found which cannot be explained within the Helfrich model. We propose a complete form of the free energy functional that accounts for this behaviour, and allows discussion of the formation and stability of nanocapsules in solution.Comment: 4 pages, 3 figures, accepted in Phys. Rev. Let

    Definitive observation of the dark triplet ground state of charged excitons in high magnetic fields

    Full text link
    The ground state of negatively charged excitons (trions) in high magnetic fields is shown to be a dark triplet state, confirming long-standing theoretical predictions. Photoluminescence (PL), reflection, and PL excitation spectroscopy of CdTe quantum wells reveal that the dark triplet trion has lower energy than the singlet trion above 24 Tesla. The singlet-triplet crossover is "hidden" (i.e., the spectral lines themselves do not cross due to different Zeeman energies), but is confirmed by temperature-dependent PL above and below 24 T. The data also show two bright triplet states.Comment: 4 figure

    Implications of location accuracy and data volume for home range estimation and fine-scale movement analysis: comparing Argos and Fastloc-GPS tracking data

    Get PDF
    The advent of Fastloc-GPS is helping to transform marine animal tracking by allowing the collection of high-quality location data for species that surface only briefly. We show how the improved location accuracy of Fastloc-GPS compared to Argos tracking is expected to lead to far more accurate home range estimates, particularly for animals moving over the scale of a few km. We reach this conclusion using simulated data and home range estimates derived from empirical tracking data for green sea turtles (Chelonia mydas) equipped with Argos linked Fastloc-GPS tags at three different foraging areas (western Indian Ocean, Western Australia, and Caribbean). Poor-quality Argos locations (e.g., location classes A, B) produced home range estimates ranging from 10 to 100 times larger than those derived from Fastloc-GPS data, whereas high-quality Argos locations (location classes 1–3) produced home range estimates that were generally comparable to those derived from Fastloc-GPS data. However, the limited number of Argos class 1–3 locations obtained for all three turtles—an average of 14.6 times more Fastloc-GPS locations were obtained compared to Argos class 1–3 locations—resulted in blurred patterns of space use. In contrast, the high volume of Fastloc-GPS locations revealed fine-scale movements in striking detail (i.e., use of discrete patches separated by just a few 100 m). We recommend careful consideration of the effects of location accuracy and data volume when developing sampling regimes for marine tracking studies and make recommendations regarding how sampling can be standardized to facilitate meaningful spatial and temporal comparisons of space use

    Magnetization of a two-dimensional electron gas with a second filled subband

    Get PDF
    We have measured the magnetization of a dual-subband two-dimensional electron gas, confined in a GaAs/AlGaAs heterojunction. In contrast to two-dimensional electron gases with a single subband, we observe non-1/B-periodic, triangularly shaped oscillations of the magnetization with an amplitude significantly less than 1μB∗1 \mu_{\mathrm{B}}^* per electron. All three effects are explained by a field dependent self-consistent model, demonstrating the shape of the magnetization is dominated by oscillations in the confining potential. Additionally, at 1 K, we observe small oscillations at magnetic fields where Landau-levels of the two different subbands cross.Comment: 4 pages, 4 figure
    • …
    corecore