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Abstract

Emden-Fowler type equations are nonlinear differential equations that appear in many
fields such as mathematical physics, astrophysics and chemistry. In this paper, we perform
an asymptotic analysis of a specific Emden-Fowler type equation that emerges in a queuing
theory context as an approximation of voltages under a well-known power flow model. Thus,
we place Emden-Fowler type equations in the context of electrical engineering. We derive
properties of the continuous solution of this specific Emden-Fowler type equation and study
the asymptotic behavior of its discrete analog. We conclude that the discrete analog has the
same asymptotic behavior as the classical continuous Emden-Fowler type equation that we
consider.

1 Introduction

Many problems in mathematical physics, astrophysics and chemistry can be modeled by an Emden-
Fowler type equation of the form

d

dt

(
tρ
du

dt

)
± tσh(u) = 0, (1.1)

where ρ, σ are real numbers, the function u : R → R is twice differentiable and h : R → R
is some given function of u. For example, choosing h(u) = un for n ∈ R, ρ = 1, σ = 0 and
plus sign in (1.1), is an important equation in the study of thermal behavior of a spherical cloud
of gas acting under the mutual attraction of its molecules and subject to the classical laws of
thermodynamics [5,7]. Another example is known as Liouville’s equation, which has been studied
extensively in mathematics [9]. This equation can be reduced to an Emden-Fowler type equation
with h(u) = eu, ρ = 1, σ = 0 and plus sign [7]. For more information on different applications of
Emden-Fowler type equations, we refer the reader to [17].

In this paper, we study the Emden-Fowler type equation where h(u) = u−1, ρ = 0, σ = 0, with
the minus sign in (1.1), and initial conditions u(0) = k−1/2, u′(0) = k−1/2w for w ≥ 0. For a
positive constant k > 0, we consider the change of variables u = k−1/2f , with resulting equation

d2f

dt2
=
k

f
, t ≥ 0; f(0) = 1, f ′(0) = w. (1.2)

This specific Emden-Fowler type equation (1.2) arises in a queuing model [6], modeling the queue of
consumers (e.g. electric vehicles (EVs)) connected to the power grid. The distribution of electric
power to consumers leads to a resource allocation problem which must be solved subject to a
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1 INTRODUCTION

constraint on the voltages in the network. These voltages are modeled by a power flow model
known as the Distflow model; see Section 2 for background. The Distflow model equations are
given by a discrete version of the nonlinear differential equation (1.2) and can be described as

Vj+1 − 2Vj + Vj−1 =
k

Vj
, j = 1, 2, . . . ; V0 = 1, V1 = 1 + k. (1.3)

In this paper, we study the asymptotic behavior and associated properties of the solution of (1.2)
using differential and integral calculus, and show its numerical validation, i.e., we show that the
solutions of (1.2) have asymptotic behavior

f(t) ∼ t (2k ln(t))
1/2

, t→∞, (1.4)

which can be used in the study of any of the aforementioned resource allocation problems. It
is natural to expect that the discrete version (1.3) of the Emden-Fowler type equation has the
asymptotic behavior of the form (1.4) as well. However, to show (1.5) below, is considerably more
challenging than in the continuous case, and this is the main technical challenge addressed in this
work. We show the asymptotic behavior of the discrete recursion, as in (1.3) to be

Vj ∼ j (2k ln(j))
1/2

, j →∞. (1.5)

There is a huge number of papers that deal with various properties of solutions of Emden-Fowler
differential equations (1.1) and especially in the case where h(u) = un or h(u) = exp(nu) for
n ≥ 0. In this setting, for the asymptotic properties of solutions of an Emden-Fowler equation,
we refer to [5], [17] and [11]. To the best of our knowledge, [14] is the only work that discusses
asymptotic behavior in the case n = −1, however not the same asymptotic behavior as we study in
this paper. More precisely, the authors of [14] study the more general Emden-Fowler type equation
with h(u) = un, n ∈ R, ρ + σ = 0 and minus sign in (1.1). In [14], the more general equation
appears in the context of the theory of diffusion and reaction governing the concentration u of
a substance disappearing by an isothermal reaction at each point t of a slab of catalyst. When
such an equation is normalized so that u(t) is the concentration as a fraction of the concentration
outside of the slab and t the distance from the central plane as a fraction of the half thickness of
the slab, the parameter

√
k may be interpreted as the ratio of the characteristic reaction rate to

the characteristic diffusion rate. This ratio is known in the chemical engineering literature as the
Thiele modulus. In this context, it is natural to keep the range of t finite and solve for the Thiele
modulus as a function of the concentration of the substance u. Therefore, [14] studies the more
general Emden-Fowler type equation for u as a function of

√
k and study asymptotic properties

of the solution as k →∞. However, here we solve an Emden-Fowler equation for the special case
n = −1 and for any given Thiele modulus k, and study what happens to the concentration u(t)
as t goes to infinity, rather than k to infinity.

Although the literature devoted to continuous Emden-Fowler equations and generalizations is very
rich, there are not many papers related to the discrete Emden-Fowler equation (1.3) or to more
general second-order non-linear discrete equations of Emden-Fowler type within the following
meaning. Let j0 be a natural number and let N(j0) denote the set of all natural numbers greater
than or equal to a fixed integer j0, that is,

N(j0) := {j0, j0 + 1, . . .}.

Then, a second-order non-linear discrete equation of Emden-Fowler type

∆2u(j)± jαum(j) = 0, (1.6)

2



2 BACKGROUND ON MOTIVATIONAL APPLICATION

is studied, where u : N(j0)→ R is an unknown solution, ∆u(j) := u(j + 1)− u(j) is its first-order
forward difference, ∆2u(j) := ∆(∆u(j)) = u(j + 2)− 2u(j + 1) + u(j) is its second-order forward
difference, and α,m are real numbers. A function u∗ : N(j0) → R is called a solution of (1.6) if
the equality

∆2u∗(j)± jα(u∗(j))m = 0

holds for every j ∈ N(j0). The work done in this area focuses on finding conditions that guarantee
the existence of a solution of such discrete equations. In [8], the authors consider the special
case of (1.6) where α = −2, write it as a system of two difference equations, and prove a general
theorem for this that gives sufficient conditions that guarantee the existence of at least one solution.
In [1, 10], the authors replace the term jα in (1.6) by p(j), where the function p(j) satisfies some
technical conditions, and find conditions that guarantee the existence of a non-oscillatory solution.
In [2,15], the authors find conditions under which the nonlinear discrete equation in (1.6) with m
of the form p/q where p and q are integers such that the difference p− q is odd, has solutions with
asymptotic behavior when j →∞ that is similar to a power-type function, that is,

u(j) ∼ a±j−s, j →∞,

for constants a± and s defined in terms of α and m. However, we study the case m = −1 and this
does not meet the condition that m is of the form p/q where p and q are integers such that the
difference p− q is odd.

The paper is structured as follows. In Section 2, we present the application that motivated our
study of particular equations in (1.2) and (1.3). We present the main results in two separate sec-
tions. In Section 3, we present the asymptotic behavior and associated properties of the continuous
solution of the differential equation in (1.2), while in Section 4, we present the asymptotic behavior
of the discrete recursion in (1.3). The proofs of the main results in the continuous case, except
for the results of Section 3.1, and discrete case can be found in Sections 5 and 6, respectively. We
finish the paper with a conclusion in Section 7. In the appendices, we gather the proofs for the
results in Section 3.1.

2 Background on motivational application

Equation (1.2) emerges in the process of charging electric vehicles (EVs) by considering their
random arrivals, their stochastic demand for energy at charging stations, and the characteristics of
the electricity distribution network. This process can be modeled as a queue, with EVs representing
jobs, and charging stations classified as servers, constrained by the physical limitations of the
distribution network [3, 6].

An electric grid is a connected network that transfers electricity from producers to consumers. It
consists of generating stations that produce electric power, high voltage transmission lines that
carry power from distant sources to demand centers, and distribution lines that connect individual
customers, e.g., houses, charging stations, etc. We focus on a network that connects a generator
to charging stations with only distribution lines. Such a network is called a distribution network.

In a distribution network, distribution lines have an impedance, which results to voltage loss during
transportation. Controlling the voltage loss ensures that every customer receives safe and reliable
energy [12]. Therefore, an important constraint in a distribution network is the requirement of
keeping voltage drops on a line under control.

In our setting, we assume that the distribution network, consisting of one generator, several
charging stations and distribution lines with the same physical properties, has a line topology.

3



3 MAIN RESULTS OF CONTINUOUS EMDEN-FOWLER TYPE EQUATION

The generator that produces electricity is called the root node. Charging stations consume power
and are called the load nodes. Thus, we represent the distribution network by a graph (here, a
line) with a root node, load nodes, and edges representing the distribution lines. Furthermore, we
assume that EVs arrive at the same rate at each charging station.

In order to model the power flow in the network, we use an approximation of the alternating
current (AC) power flow equations [16]. These power flow equations characterize the steady-state
relationship between power injections at each node, the voltage magnitudes, and phase angles that
are necessary to transmit power from generators to load nodes. We study a load flow model known
as the branch flow model or the Distflow model [4, 13]. Due to the specific choice for the network
as a line, the same arrival rate at all charging stations, distribution lines with the same physical
properties, and the voltage drop constraint, the power flow model has a recursive structure, that
is, the voltages at nodes j = 0, . . . , N − 1, are given by recursion (1.3). Here, N is the root node,
and V0 = 1 is chosen as normalization. This recursion leads to real-valued voltages and ignores
line reactances and reactive power, which is a reasonable assumption in distribution networks. We
refer to [6] for more detail.

3 Main results of continuous Emden-Fowler type equation

In this section, we study the asymptotic behavior of the solution f of (1.2). To do so, we present
in Lemma 3.1 the solution of a more general differential equation. Namely, we consider a more
general initial condition f(0) = y > 0.

The solution f presented in Lemma 3.1 allows us to study the asymptotic behavior of f0(x), i.e.,
the solution of the differential equation in Lemma 3.1 where k = 1, y = 1 and w = 0, or in other
words, the solution of the differential equation f ′′(x) = 1/f(x) with initial conditions f(0) = 1
and f ′(0) = 0; see Theorem 3.1. We can then derive the asymptotic behavior of f ; see Corollary
3.1.

The following theorem provides the limiting behavior of f0(x), i.e., the solution of Equation (1.2)
where k = 1, y = 1 and w = 0.

Theorem 3.1. Let f0(x) be the solution of (1.2) for k = 1, y = 1 and w = 0. The limiting
behavior of the function f0(x) as x→∞ is given by,

f0(x) = z(ln(z))
1
2

[
1 +O

(
ln(ln(z))

ln(z)

)]
where z = x

√
2.

We first derive an implicit solution to Equation (1.2) where k = 1, y = 1 and w = 0. Namely, we
derive f0(x) in terms of a function U(x); cf. Lemma 3.1. We show, using Lemma 3.2, that we can
derive an approximation of U(x) by iterating the following equation:

exp(U2)− 1

2U
=

x√
2
. (3.1)

We can then use this approximation of U(x) in the implicit solution of the differential equation to
derive the asymptotic behavior of Theorem 3.1. The proofs of Theorem 3.1 and Lemma 3.2 can
be found in Section 5. We now give the necessary lemmas for the proof of Theorem 3.1.
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3 MAIN RESULTS OF CONTINUOUS EMDEN-FOWLER TYPE EQUATION

Lemma 3.1 (Lemma D.1 in [6]). For t ≥ 0, k > 0, y > 0, w ≥ 0, the nonlinear differential equation

f ′′(t) =
k

f(t)

with initial conditions f(0) = y and f ′(0) = w has the unique solution

f(t) = cf0(a+ bt). (3.2)

Here, f0 is given by

f0(x) = exp(U2(x)), for x ≥ 0, (3.3)

where U(x), for x ≥ 0, is given by ∫ U(x)

0

exp(u2) du =
x√
2
, (3.4)

and where the constants a, b, c are given by

a =
√

2

∫ w√
2k

0

exp(u2) du, (3.5)

b =

√
k

y
exp

(
w2

2k

)
, (3.6)

c = y exp

(
−w2

2k

)
. (3.7)

Notice that we do not find an elementary closed-form solution of the function f0(x), since f0(x)
is given in terms of U(x), given implicitly by (3.4). For x ≥ 0, the left-hand side of (3.4) is equal
to 1

2

√
πerfi(U(x)) where erfi(z) is the imaginary error function, defined by

erfi(z) = −i erf(iz), (3.8)

where erf(w) = 2√
π

∫ w
0

exp(−v2)dv is the well-known error function.

Lemma 3.2. For y ≥ 0, we have the inequalities

exp(y2)− 1

2y
≤
∫ y

0

exp(u2)du ≤ exp(y2)− 1

y
, (3.9)

and ∫ y

0

exp(u2)du ≤ exp(y2)− 1

2y

(
1 +

2

y2

)
. (3.10)

Now, we present the asymptotic behavior of the solution f of (1.2).

Corollary 3.1. The limiting behavior of the function f(t), defined in Equation (3.2), is given by

f(t) = t
√

2k ln(t)

(
1 +O

(
ln(ln(t))

ln(t)

))
, t→∞. (3.11)

5



3 MAIN RESULTS OF CONTINUOUS EMDEN-FOWLER TYPE EQUATION

Proof of Corollary 3.1. In order to derive a limit result of the exact solution of (1.2), i.e. for (3.2)
with initial conditions f(0) = 1 and f ′(0) = w, we use the limiting behavior of the function f0(x)
and the definitions of a, b and c as in (3.5)–(3.7). Denote v = ln(z). Then, by Theorem 3.1, we
have

f(t) = cf0(a+ bt) = czv
1
2

(
1 +O

(
ln(v)

v

))
. (3.12)

In what follows, we carefully examine the quantities czv
1
2 and ln(v)/v. First, observe that

v = ln(z) = ln((a+ bt)
√

2) = ln(t) +O(1), t > exp(1),

which yields

v
1
2 = (ln(t) +O(1))

1
2

= ln(t)
1
2

(
1 +O

(
1

ln(t)

))
, t > exp(1),

and

ln(v) = ln(ln(t) +O(1))

= ln(ln(t)) +O
(

1

ln(t)

)
, t > exp(1).

Therefore, using that cb =
√
k, we get

czv
1
2 = c(a+ bt)

√
2 ln(t)

1
2

(
1 +O

(
1

ln(t)

))
= (t+O(1))

√
2k ln(t)

(
1 +O

(
1

ln(t)

))
= t
√

2k ln(t)

(
1 +O

(
1

ln(t)

))
, t > exp(1), (3.13)

and

ln(v)

v
=

ln(ln(t)) +O
(

1
ln(t)

)
ln(t) +O(1)

=
ln(ln(t))

ln(t)

(
1 +O

(
1

ln(ln(t))

))
, t > exp(1). (3.14)

Putting the results in (3.13) and (3.14) together in (3.12), yields

f(t) = t
√

2k ln(t)

(
1 +O

(
ln(ln(t))

ln(t)

))
, t > exp(1).

3.1 Associated properties of the ratio between f and its first order
approximation

In this section, we study associated properties of the ratio between f(t) and its first order approx-
imation. Using only the first term of the asymptotic expansion of (3.11), we define

g(t) := t
√

2k ln(t). (3.15)

6



3 MAIN RESULTS OF CONTINUOUS EMDEN-FOWLER TYPE EQUATION

The reason for studying this ratio, and in particular the role of k, is twofold: (1) the useful insights
that we get for (the proof of) the asymptotic behavior in the discrete case in Section 4, and (2)
the applicability of Equation (1.2) in our motivational application, in cases where the parameter
k in (1.2) is small.

Considering the practical application for charging electric vehicles, the ratio of normalized voltages
Vj/V0 = Vj , j = 1, 2, . . . should be below a level 1/(1−∆), where the tolerance ∆ is small (of the
order 10−1), due to the voltage drop constraint. Therefore, the parameter k, comprising given
charging rates and resistances at all stations, is normally small (of the order 10−3).

Furthermore, to match the initial conditions V0 = 1 and V1 = 1 + k of the discrete recursion with
the initial conditions of the continuous analog, we demand f(0) = 1 and f(1) = 1 + k. However,
notice that in our continuous analog described by (1.2), we have, next to the initial condition
f(0) = 1, the initial condition f ′(0) = w, while nothing is assumed about the value f(1). The
question arises whether it is possible to connect the conditions f ′(0) = w and f(1) = 1 + k. To do
so, we use an alternative representation of f given in Lemma A.1. Then, using this representation,
we show the existence and uniqueness of w ≥ 0 for every k such that the solution of (1.2) satisfies
f(1) = 1 + k in Lemma A.2. The proof of Lemmas A.1–A.2 can be found in Appendix A.

The importance of the role of the parameter k becomes immediate from the comparison of the
functions f(t) and g(t) in Theorem 3.2.

Theorem 3.2. Let f(t) be given by (3.2) with initial conditions f(0) = 1, f ′(0) = w such that
f(1) = 1 + k, and let g(t) be given by (3.15). Then, there is a unique kc = 1.0384 . . . such that

(a) k ≥ kc implies f(t) ≥ g(t) for all t ≥ 1,

(b) 0 < k < kc implies that there are t1(k), t2(k) with 1 < t1(k) < t2(k) < ∞ such that
f(t) < g(t) when t1(k) < t < t2(k) and f(t) > g(t) when 1 ≤ t < t1(k) or t > t2(k).

In what follows, we start with introducing notation for the proof of Theorem 3.2, and give a sketch
of the proof. The theorem is proven in Appendix A.

Define the auxiliary function ψ : [1,∞)→ [0,∞) by

ψ(t) := 2k +
k

2 ln(t)
− k ln(2k ln(t)), (3.16)

and notice (also for the proof in Lemma 4.3) that the function ψ(t) is strictly decreasing from +∞
at t = 1 to 0 at t =∞. This follows easily from the definition of ψ in (3.16).

Denote the unique solution t > 1 of the equation ψ(t) = w2 by t0(k), i.e.

ψ(t0(k)) = w2, (3.17)

where w comes from the initial condition f ′(0) = w ≥ 0. Additionally, define

F (t, k) :=

∫ (W 2+ln(g(t)))
1
2

(W 2+ln(f(t)))
1
2

exp(v2)dv (3.18)

= −t
√
k

2
exp(W 2) +

∫ (W 2+ln(g(t)))
1
2

W

exp(v2)dv, (3.19)

7



3 MAIN RESULTS OF CONTINUOUS EMDEN-FOWLER TYPE EQUATION

where the second line is a consequence of Lemma A.1 with y = 1. The proof of Theorem 3.2 centers
about the unique solution t0(k) of (3.17). First, from (3.18), we notice that maxt≥1 F (t, k) ≤ 0
is equivalent to f(t) ≥ g(t). In Lemma A.3, we show that maxt≥1 F (t, k) is exactly attained at
the point t0(k), i.e., maxt≥1 F (t, k) = F (t0(k), k). Notice that F (t0(k), k) is only a function of the
parameter k. In Lemma A.4, we show F (t0(k), k) is a strictly decreasing function of k. To prove
Lemma A.4, we make use of additional Lemma A.5. Then, in Lemmas A.6 and A.7, we show that
F (t0(k), k) is positive for small k and negative for large k, respectively. This allows us to conclude
that F (t0(k), k) ≤ 0 is equivalent to k ≥ kc. In summary, to prove Theorem 3.2, we show

f(t) ≥ g(t) ⇐⇒ max
t≥1

F (t, k) = F (t0(k), k) ≤ 0 ⇐⇒ k ≥ kc.

Furthermore, in Lemma A.3, we show that F (t, k) has only one extreme point, and in particular
that this extreme point is a maximum and that this is attained at the point t0(k). Thus, in
the case where 0 < k < kc, we are left with t1(k), t2(k) with 1 < t1(k) < t2(k) < ∞ such that
f(t) < g(t) when t1(k) < t < t2(k) and f(t) > g(t) when 1 ≤ t < t1(k) or t > t2(k).

Necessary Lemmas A.3–A.7 to prove Theorem 3.2 are stated and proven in Appendix A.

A comparison of the approximation g(t), i.e. for (3.15), to the exact solution f(t) of (1.2) where
w is such that f(1) = 1 + k, for three values of k, is given in Figure 1.

Figure 1: Plot of quotient f/g for three values of k.

However, in the setting where k is small, the result in Theorem 3.2, case (b) leaves two practical
questions; how small the ratio f(t)/g(t) can be when t1(k) ≤ t ≤ t2(k) and how large the ratio
f(t)/g(t) can be when t ≥ t2(k). These practical questions are covered in Theorem 3.3.

Theorem 3.3. Let f(t) be given by (3.2) with initial conditions f(0) = 1, f ′(0) = w such that
f(1) = 1 + k, and let g(t) be given by (3.15). Then, for 0 < k < kc, we have

f(t)/g(t) ≥ 1

2

(
ln
(√

2/k
))− 1

2

, (3.20)

when t1(k) ≤ t ≤ t2(k). Furthermore, we have

f(t)/g(t) ≤ 1.21 (3.21)

when t ≥ t2(k).

8



4 MAIN RESULTS OF DISCRETE EMDEN-FOWLER TYPE EQUATION

The proof exploits properties of Theorem 3.1 and Theorem 3.2, such as exact representations
(3.5)–(3.7) and actual values such as the one for kc, but most importantly, we use numerical
results to compute bounds for the quantity f0(x)/g(x), where f0(x) is given in (3.3) and g(x) is
given in (3.15). The proofs of Theorem 3.3, and supporting Lemmas A.8 and A.9 can be found in
Appendix A.

4 Main results of discrete Emden-Fowler type equation

In this section, we present the asymptotic behavior of the discrete recursion (1.3). Thus, we
consider the sequence Vj , j = 0, 1, . . . defined in (1.3) and we let

Wj = j (2k ln(j))
1
2 = g(j), j = 1, 2, . . . , (4.1)

denote the discrete equation analog to g(j); cf. (3.15), at integer points j = 1, 2, . . .. The asymp-
totic behavior of the discrete recursion (1.3) is summarized in the following theorem.

Theorem 4.1. Let Vj , j = 0, 1, . . . and Wj , j = 1, 2, . . . be as in (1.3) and (4.1), respectively.
Then,

lim
j→∞

Vj
Wj

= 1.

The proof of Theorem 4.1 relies on the following observations: there always exists a point n ∈
{1, 2, . . .} such that either Vj ≥ Wj for all j ≥ n or Vj ≤ Wj for all j ≥ n, and the existence of
such a point implies in either case the desired asymptotic behavior of the sequence Vj .

To show that there exists a point n ∈ {1, 2, . . .} such that either Vj ≥Wj for all j ≥ n or Vj ≤Wj

for all j ≥ n, we rely on Lemmas 4.1, 4.2 and 4.3. Due to the inequalities in Lemmas 4.1 and 4.2,
we show

Vj+1 − Vj ≥Wj+1 −Wj , (4.2)

for j ≥ n0(k), where n0(k) is appropriately chosen. Then, Equation (4.2) implies that there exists
either a point n ≥ n0(k) such that Vn ≥ Wn or not. If there exists a point n ≥ n0(k) such that
Vn ≥ Wn, then we show in Lemma 4.3 that Vj ≥ Wj for all j ≥ n. If not, we have that Vj < Wj

for all j ≥ n0(k).

Then, we are left to show that the existence of such a point implies the desired asymptotic behavior
of Vj . This is done in Lemma 4.4.

We now give the necessary lemmas to prove Theorem 4.1.

Lemma 4.1. Let Wj , j = 1, 2, . . . be as in (4.1). Then,

Wj+1 −Wj ≤ (ψ(j + 1) + 2k ln(Wj+1))
1
2 . (4.3)

where ψ(j) for j = 1, . . . is defined in (3.16).

Lemma 4.2. Let Vj , j = 0, 1, . . . be as in (1.3). Then,

Vj+1 − Vj ≥ (C + 2k ln(Vj))
1
2 , (4.4)

for some constant C.

9



4 MAIN RESULTS OF DISCRETE EMDEN-FOWLER TYPE EQUATION

Lemma 4.3. Let Vj , j = 0, 1, . . . and Wj , j = 1, 2, . . . be as in (1.3) and (4.1), respectively. Then,
we have the following equivalence.

1. There is n ≥ n0(k) such that Vn ≥Wn.

2. There is n ≥ n0(k) such that Vj ≥Wj for all j ≥ n.

Lemma 4.4. Let Vj , j = 0, 1, . . . , N and Wj , j = 1, 2, . . . , N be as in (1.3) and (4.1), respectively.
There holds the following. In either case that

1. there is a point n ∈ {1, 2, . . .} such that Vj ≥Wj for all j ≥ n,

or

2. there is a point n ∈ {1, 2, . . .} such that Vj ≤Wj for all j ≥ n,

we have that Vj = Wj(1 + O(1)), j →∞.

The proofs of Lemmas 4.1–4.4 are given in Section 6. Now, Theorem 4.1 follows from Lemmas
4.1–4.4.

Proof of Theorem 4.1. Let Vj , j = 0, 1, . . . and Wj , j = 1, 2, . . . be as in (1.3) and (4.1), respec-
tively. On the one hand, as a result of Lemma 4.2, the first order differences of the sequence Vj
are bounded according to (4.4), while on the other hand, as a result of Lemma 4.1, the first order
finite differences of Wj are bounded according to (4.3).

A minor issue is that (4.3) involves ln(Wj+1), whereas (4.4) involves ln(Vj). However, by (4.1),
we write

ln(Wj+1)− ln(Wj) = ln
(

(j + 1)(2k ln(j + 1))
1
2

)
− ln

(
j(2k ln(j))

1
2

)
= ln

(
1 +

1

j

)
+

1

2
ln

((
ln(j + 1)

ln(j)

))
(4.5)

and notice from increasingness of the function j ≥ 1 7→ ln(j) and the inequality ln(j+1)−ln(j) ≤ 1
j

that ln(j+1)
ln(j) ≤ 1 + 1

j when j > exp(1). Using this last inequality in (4.5), yields that ln(Wj+1) =

ln(Wj) +O(1/j).

Moreover, Equations (4.3) and (4.4) imply that there exists a point n0(k) such that Vj+1 − Vj ≥
Wj+1 −Wj when j ≥ n0(k). To eliminate the effect of the term O(1/j) in ln(Wj+1) = ln(Wj) +
O(1/j), we let n0(k) be such that ψ(n0(k)) ≤ C − 1.

In any case, we can distinguish between two cases: there exists either a point n ≥ n0(k) such that
Vn ≥Wn or not, i.e.,

1. There is n ≥ n0(k) such that Vn ≥Wn,

2. Vj < Wj for all j ≥ n0(k).

By Lemma 4.3, we have, on the one hand, that the existence of a point n ≥ n0(k) such that

10
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Vn ≥ Wn, implies that Vj ≥ Wj for all j ≥ n and on the other hand, that the non-existence of
n ≥ n0(k) such that Vn ≥Wn, implies that Vj < Wj for all j ≥ n0(k).

This situation exactly fits the framework of Lemma 4.4.

We consider the two cases above. First, assume that (1) holds. Then by Lemma 4.3, we have
Vj ≥Wj for all j ≥ n. From Vj ≥Wj , for all j ≥ n, we have that Lemma 4.4, item (1) holds, and
so

Vj = Wj(1 + O(1)), j →∞.

Second, assume that (2) holds, so that Vj < Wj for all j > n0(k). Then, Lemma 4.4, item (2)
holds, and so

Vj = Wj(1 + O(1)), j →∞.

Hence, any of the two cases yields

lim
j→∞

Vj
Wj

= 1.

Although we do not provide associated properties of the asymptotic behavior of Vj as j → ∞ as
we did for the asymptotic behavior of f(x) as x → ∞, we compare the behavior of Vj with the
discrete counterpart of g(t), i.e. Wj , for j = 1, . . . , 100 in Figure 2.

Figure 2: Plot of quotient V/W for three values of k.

5 Proofs for Section 3

The main result in Section 3, i.e., Theorem 3.1 follows from Lemmas 3.1 and 3.2. In this section,
we provide the proofs of both Theorem 3.1 and Lemma 3.2. For the proof of Lemma 3.1 we refer
to [6].

11
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5.1 Proof of Theorem 3.1

Proof of Theorem 3.1. Denoting U = U(x) = (ln(f0(x))
1
2 for x ≥ 0, we have by (3.4)∫ U

0

exp(u2)du =
x√
2
. (5.1)

We consider for x ≥ 0 the equation

exp(y2)− 1

2y
=

x√
2
. (5.2)

With z = x
√

2, we can write (5.2) as

y = hz(y), hz(y) = (ln(1 + zy))
1
2 .

The function hz(y) is concave in y ≥ 0 since

d

dy
[hz(y)] =

z

2(1 + yz)(ln(1 + yz))
1
2

is decreasing in y ≥ 0. Furthermore, when z > exp(1)− 1,

hz(1) = (ln(1 + z))
1
2 > 1, hz(z) = (ln(1 + z2))

1
2 < z,

where the first inequality follows from z > exp(1) − 1 and the second inequality follows from
ln(1 + z2) < z2, z > 0. Therefore, the equation y = hz(y) has for any z > exp(1)− 1 exactly one
solution yLB ∈ [1, z]; here “LB” refers to the lower-bound in (3.9). Since yLB ∈ [1, z], we have

yLB = (ln(1 + zyLB))
1
2 ∈

[
(ln(1 + z))

1
2 , (ln(1 + z2))

1
2

]
, (5.3)

so that yLB = O(ln(z)
1
2 ), z > exp(1)− 1. When we iterate (5.3) one more time, we get

yLB =

(
ln(z) + ln

(
1

z
+ yLB

)) 1
2

= (ln(z))
1
2

(
1 +

ln
(
1
z + yLB

)
ln(z)

) 1
2

= (ln(z))
1
2

(
1 +O

(
ln(ln(z))

ln(z)

))
, z > exp(1)− 1. (5.4)

Observe that

U = (ln(f0(x))
1
2 ≤ yLB , z > exp(1)− 1. (5.5)

Indeed, we have from (5.1) and the first inequality in (3.9)

exp(U2)− 1

2U
≤
∫ U

0

exp(u2)du =
x√
2

=
exp(y2LB)− 1

2yLB
, (5.6)

and so U ≤ yLB follows from increasingness of the function y ≥ 0 7→ (exp(y2)−1)/2y. In addition
to the upper bound on y in (5.5), we also have the lower bound

U ≥
(

ln
(z

2

)) 1
2

, z ≥ 2. (5.7)

Indeed, from (5.1) and the second inequality in (3.9),

exp(U2)− 1

U
≥
∫ U

0

exp(u2)du =
x√
2

=
z

2
,

12
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while

exp(y2)− 1

y

∣∣∣∣
y=(ln( z

2 ))
1
2

=
z
2 − 1

(ln( z2 ))
1
2

≤ z

2
, z ≥ 2, (5.8)

where the inequality in (5.8) follows from − ln(w) ≥ (1− w)2 with w = 2
z ∈ (0, 1]. We have from

(5.6) that

exp(U2)− 1

2U
≤ x√

2
. (5.9)

When we use (5.7) in (3.10) with y = U , we see that

x√
2

=

∫ U

0

exp(u2)du ≤ exp(U2)− 1

2U

(
1 +

2

U2

)
=

exp(U2)− 1

2U

(
1 +O

(
1

ln(z)

))
. (5.10)

From (5.9) and (5.10), we then find that

exp(U2)− 1

2U
=

x√
2

(
1 +O

(
1

ln(z)

))
. (5.11)

Observe that (5.11) coincides with (5.2) when we take y = U and replace the right-hand side x√
2

by
(
x√
2

)(
1 +O

(
1

ln(z)

))
. Using then (5.4) with z replaced by z

(
1 +O

(
1

ln(z)

))
, we find that

U =

(
ln

(
z

(
1 +O

(
1

ln(z)

)))) 1
2

1 +O

 ln(ln(z
(

1 +O
(

1
ln(z)

))
))

ln(z
(

1 +O
(

1
ln(z)

))
)


= (ln(z))

1
2

(
1 +O

(
ln(ln(z))

ln(z)

))
. (5.12)

Then, finally, from (5.11) and (5.12),

f0(x) = exp(U2) = 1 + zU

(
1 +O

(
1

ln(z)

))
= 1 + z(ln(z))

1
2

(
1 +O

(
ln(ln(z))

ln(z)

))(
1 +O

(
1

ln(z)

))
= z(ln(z))

1
2

(
1 +O

(
ln(ln(z))

ln(z)

))
,

as required.

5.2 Proof of Lemma 3.2

Proof of Lemma 3.2. We require the inequalities (3.9) and (3.10). The inequalities in (3.9) follow
from expanding the three functions in (3.9) as a series involving odd powers y2l+1, l = 0, 1, . . . , of
y and comparing coefficients, i.e.,

exp(y2)− 1

2y
=

∞∑
`=0

y2`+1

2(`+ 1)!

≤
∞∑
`=0

y2`+1

(2`+ 1)`!
=

∫ y

0

exp(u2)du

≤
∞∑
`=0

y2`+1

(`+ 1)!
=

exp(y2)− 1

y
.

13
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As to the inequality in (3.10), we use partial integration according to∫ y

0

exp(u2)du =

∫ y

0

1

2u
d(exp(u2)− 1)

=
exp(y2)− 1

2y
+

∫ y

0

exp(u2)− 1

2u2
du. (5.13)

Now ∫ y

0

exp(u2)− 1

2u2
du ≤ exp(y2)− 1− y2

y3
, y ≥ 0, (5.14)

as follows from expanding the two functions in (5.14) as a series involving odd powers y2l+1, l =
0, 1, . . . , of y and comparing coefficients. Then (3.10) follows from (5.13)–(5.14) upon deleting the
y2 in the numerator at the right-hand side of (5.14).

6 Proofs for Section 4

The main result in Section 4 follows from Lemmas 4.1–4.4. The proof of each Lemma can be
found in 6.1–6.4, respectively.

6.1 Proof of Lemma 4.1

Proof of Lemma 4.1. For Equation (4.1), by the mean-value theorem, there is a ξ ∈ [j, j+ 1] such
that

Wj+1 −Wj = g(j + 1)− g(j) = g′(ξ) ≤ g′(j + 1). (6.1)

We have used here that g(j) is convex in j ≥ exp(1/2). We make the term g′(j + 1) explicit, by
differentiating g(t), see (3.15), with respect to t and rewrite it in terms of the function g(t) itself
(so for integer points, in terms of Wt) and ψ(t) as in (3.16). Differentiation of g(t) gives,

g′(t) = (2k)
1
2
d

dt
(t(ln(t))

1
2 )

= (2k)
1
2

(
(ln(t))

1
2 +

1

2(ln(t))
1
2

)

= (2k)
1
2

(
(2 ln(t) + 1)2

4 ln(t)

) 1
2

=

(
2k ln(t) + 2k +

k

2 ln(t)

) 1
2

. (6.2)

However, (6.2) does not contain the function g(t) yet. Therefore, we rewrite the first term of the
right-hand side of (6.2) as follows:

2k ln(t) = 2k ln(t(2k ln(t))
1
2 )− k ln(2k ln(t))

= 2k ln(g(t))− k ln(2k ln(t)). (6.3)

Then, after inserting (6.3) and the definition of ψ(t) in (3.16), we get

g′(t) =

(
2k ln(g(t))− k ln(2k ln(t) + 2k +

k

2 ln(t)

) 1
2

= (ψ(t) + 2k ln(g(t)))
1
2 , t > 1. (6.4)

Then, combining the upper bound in (6.1) and (6.4), yields the desired upper bound for the finite
differences of Wj in (4.3).

14
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6.2 Proof of Lemma 4.2

In this section, we prove a lower bound for the first order finite differences of Vj that is similar to
the upper bound we obtained in (4.3). This result follows from Lemmas 6.1 and 6.2.

In more detail, the proof of Lemma 4.2 consists of algebraic manipulations of (1.3), but the key
in the proof is the use of Lemma 6.2 in these manipulations, which, in turn, builds on technical
results established in Lemma 6.1. We first state Lemmas 6.1 and 6.2.

Lemma 6.1. Let Vj , j = 0, 1, . . . , be as in (1.3). Then,

1. Vj ≥ jk + 1,

2. Vj+1 − Vj =
∑j
i=0

k
Vi
→∞ as j →∞,

3. Vj+1 − Vj ≤ k + ln (1 + jk),

4.
Vj+1−Vj

Vj
= O

(
ln(j)
j

)
.

Lemma 6.2. Let Vj , j = 0, 1, . . . , N − 1 as in (1.3). Then,

Vj+1 − Vj−1
Vj

= ln(Vj+1)− ln(Vj−1) +O

((
ln(j)

j

)3
)
.

Both Lemmas 6.1 and 6.2 are proven later in this section. Here, we discuss the efficacy of Lemma
6.2 by numerical validation. We approximate,

Vj+1 − Vj−1
Vj

=

(
Vj+1

Vj
− 1

)
+

(
1− Vj−1

Vj

)
(6.5)

by

≈ ln

(
1 +

(
Vj+1

Vj
− 1

))
− ln

(
1−

(
1− Vj−1

Vj

))
= ln

(
Vj+1

Vj

)
− ln

(
Vj−1
Vj

)
= ln(Vj+1)− ln(Vj−1). (6.6)

The efficacy of the approximation (6.6) of (6.5) is illustrated for the cases k = 0.001, k = 0.01
and k = 0.1 in Figure 3. For these cases, the approximation already yields relative errors smaller
than 0.5% for j ≥ 10.

Having Lemmas 6.1 and 6.2 at our disposal, we are now ready to give the proof of Lemma 4.2.

Proof of Lemma 4.2. In order to relate the recursion in (1.3) to (4.3), we write (1.3) as

(Vj+1 − Vj)− (Vj − Vj−1) =
k

Vj
, j = 1, 2, . . . , N − 1 (6.7)

and multiply both sides of (6.7) by

Vj+1 − Vj−1 = (Vj+1 − Vj) + (Vj − Vj−1)

15
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Figure 3: Illustration of efficacy of the approximation (6.6) of (6.5) by showing the quotient of
(6.6) and (6.5), for three values of k.

to obtain

(Vj+1 − Vj)2 − (Vj − Vj−1)2 = k
Vj+1 − Vj−1

Vj
.

Summing this over j = 1, 2, . . . , n, we get

(Vn+1 − Vn)2 − (V1 − V0)2 = k

n∑
j=1

Vj+1 − Vj−1
Vj

. (6.8)

We proceed with rewriting Equation (6.8) to an expression that is similar to the one we obtained
for the sequence Wj , j = 1, 2, . . . , N in Equation (6.1) using Lemma 6.2. Then, we have

(Vn+1 − Vn)2 = (V1 − V0)2 + k

n∑
j=1

Vj+1 − Vj−1
Vj

= (V1 − V0)2 + k

n∑
j=1

{
ln(Vj+1)− ln(Vj−1) +O

((
ln(j)

j

)3
)}

. (6.9)

We observe a telescoping sum in the right-hand side of (6.9), so we have

n∑
j=1

{ln(Vj+1)− ln(Vj−1)} = ln(Vn+1) + ln(Vn)− (ln(V1) + ln(V0)) .

Furthermore, we introduce the following notation:

w2(k) = (V1 − V0)2 − k (ln(V1) + ln(V0))

= k2 − k ln(1 + k)

16
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and Rj = O
((

ln(j)
j

)3)
. Thus, we rewrite (6.9) to

(Vn+1 − Vn)2 = w2(k) + k(ln(Vn+1) + ln(Vn)) +

n∑
j=1

O

((
ln(j)

j

)3
)

= w2(k) + k(ln(Vn+1) + ln(Vn)) +

n∑
j=1

Rj .

Recall that we want to derive a lower bound for the first order finite differences Vn+1 − Vn. In
order to do so, we use that Vn+1 ≥ Vn (see [6, Lemma 5.1]). Thus,

(Vn+1 − Vn)2 ≥ w2(k) + 2k ln(Vn) +

n∑
j=1

Rj .

Since
∑∞
j=1 |Rj | <∞, we thus see that there is a constant C such that

Vn+1 − Vn ≥ (C + 2k ln(Vn))
1
2 ,

as desired.

To complete the proof of Lemma 4.2, we are left to prove Lemmas 6.1 and 6.2. This is done in
Sections 6.2.1 and 6.2.2, respectively.

6.2.1 Proof of Lemma 6.1

Proof of Lemma 6.1. The properties of the sequence Vj , j = 0, 1, . . . are given in the following way.

1. We have from (1.3) for j = 1, 2, . . .,

Vj+1 − Vj = Vj − Vj−1 +
k

Vj
≥ Vj − Vj−1. (6.10)

Hence, Vj+1 − Vj ≥ V1 − V0 = (1 + k)− 1 = k for j = 0, 1, . . .. Then we get for j = 0, 1, . . .

Vj+1 = Vj + (Vj+1 − Vj) ≥ Vj + k,

and it follows from V0 = 1 and induction that Vj ≥ 1 + jk for j = 0, 1, . . ..

2. We have from the identity in (6.10) by summation that

Vj+1 − Vj = (V1 − V0) +

j∑
i=1

k

Vi

=
k

V0
+

j∑
i=1

k

Vi

=

j∑
i=0

k

Vi
.

When the latter expression would remain bounded by B < ∞ as j → ∞, we would have
Vj+1 ≤ V0 + jB, j = 0, 1, . . .. However, then

∑j
i=0

k
Vi
≥
∑j−1
i=0

k
V0+iB

→∞ as j →∞. Since
this contradicts the assumption that the latter expression remains bounded, we must have
that

∑j
i=0

k
Vi
→∞ as j →∞.
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3. Combining the results of items (1) and (2) gives us the desired result. Indeed,

Vj+1 − Vj =

j∑
i=0

k

Vi
≤

j∑
i=0

k

ik + 1
,

and

j∑
i=0

k

ik + 1
= k +

j∑
i=1

1

i+ 1/k

≤ k +

∫ j+ 1
2+

1
k

1
2+

1
k

1

x
dx

= k +

(
ln

(
j +

1

2
+

1

k

)
− ln

(
1

2
+

1

k

))
= k + ln

(
1 +

j
1
2 + 1

k

)
≤ k + ln (1 + jk) .

4. This is a direct consequence of the inequalities in items (1) and (3). Combining (1) and (3)
gives,

Vj+1 − Vj
Vj

≤ k + ln(1 + jk)

1 + jk
.

Hence,
Vj+1−Vj

Vj
= O

(
ln(j)
j

)
.

6.2.2 Proof of Lemma 6.2

Proof of Lemma 6.2. We show the asymptotic behavior of
Vj+1−Vj

Vj
as j →∞. Let, for j = 1, 2, . . .,

Xj =
Vj+1

Vj
− 1 =

Vj+1 − Vj
Vj

,

Yj = 1− Vj−1
Vj

=
Vj − Vj−1

Vj
.

Then,

0 < Xj < 1, 0 < Yj < 1. (6.11)

Indeed, from Lemma 6.1, items 1 and 3,

Xj =
Vj+1 − Vj

Vj
≤

{
1− 1

(k+1)2 < 1, j = 1,
k

1+jk + ln(1+jk)
1+jk ≤ k

1+jk + 1
exp(1) ≤

1
2 + 1

exp(1) < 1, j = 2, 3, . . . , N − 1.

Here it has been used that the function y−1 ln(y), y ≥ 1, has a global maximum at y = exp(1) that
equals exp(−1). The other inequalities follow by the increasingness of the sequence Vj , j = 0, 1, . . .
(see [6, Lemma 5.1]). Furthermore, we have

Xj + Yj =
Vj+1 − Vj−1

Vj
,

Xj − Yj =
Vj+1 − 2Vj + Vj−1

Vj
=

k

(Vj)2
> 0.
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Therefore,

ln(Vj+1)− ln(Vj−1) = ln

(
Vj+1

Vj

)
− ln

(
Vj−1
Vj

)
= ln(1 +Xj)− ln(1− Yj)

=

(
Xj −

X2
j

2
+
X3
j

3
− . . .

)
−

(
−Yj −

Y 2
j

2
−
Y 3
j

3
− . . .

)

= (Xj + Yj)−
1

2
(X2

j − Y 2
j ) +

∞∑
i=2

1

i+ 1

(
(−1)iXi+1

j + Y i+1
j

)
=
Vj+1 − Vj−1

Vj
− k(Vj+1 − Vj−1)

2(Vj)3
+

∞∑
i=2

1

i+ 1

(
(−1)iXi+1

j + Y i+1
j

)
(6.12)

where the bounds in (6.11) assure convergence of the infinite series. Since 0 < Yj < Xj , we have

∞∑
i=2

1

i+ 1

∣∣(−1)iXi+1
j + Y i+1

j

∣∣ ≤ ∞∑
i=2

2

i+ 1
Xi+1
j

= X3
j

∞∑
i=2

2

i+ 1
Xi−2
j

= O
(
X3
j

)
= O

((
Vj+1 − Vj

Vj

)3
)
.

Thus, we get that,

Vj+1 − Vj−1
Vj

= ln(Vj+1)− ln(Vj−1) +O

(
k(Vj+1 − Vj−1)

2Vj
3 +

(
Vj+1 − Vj

Vj

)3
)

= ln(Vj+1)− ln(Vj−1) +O

((
ln(j)

j

)3
)
.

In the last line, we used Lemma 6.1, item (4).

6.3 Proof of Lemma 4.3

Proof of Lemma 4.3. We establish the (non-trivial) implication from (1) to (2). Assume there is
n ≥ n0(k) such that Vn ≥ Wn. We claim that Vj ≥ Wj for all j ≥ n. Indeed, when there is a
n2 > n such that Vn2

< Wn2
, we let n3 := max{j : n ≤ j ≤ n2, Vj ≥ Wj}. Then Vn3

≥ Wn3
and

Vj < Wj for n3 < j ≤ n2. However, since ψ(j) is strictly decreasing and n3 + 1 > n0(k), we have

Vn3+1 − Vn3
≥ (C + 2k ln(Vn3

))
1
2

≥ (C − 1 + 2k ln(Vn3
))

1
2

≥ (ψ(n0(k)) + 2k ln(Wn3+1))
1
2

≥ (ψ(n3 + 1) + 2k ln(Wn3+1))
1
2

≥Wn3+1 −Wn3
,

which implies Vn3+1 ≥ Wn3+1. This contradicts the definition of n3. Since the choice of n2 is
arbitrary, we have that Vj ≥Wj for all j ≥ n. The implication from (2) to (1) is immediate.
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6.4 Proof of Lemma 4.4

Proof of Lemma 4.4. Let n = 2, 3, . . . and j ≥ n. Then,

Vj = Vn +

j−1∑
i=n

(Vi+1 − Vi)

= Vn +

j−1∑
i=n

(
i∑

l=n

[(Vl+1 − Vl)− (Vl − Vl−1)] + (Vn − Vn−1)

)

= Vn + (j − n)(Vn − Vn−1) +

j−1∑
i=n

(
i∑

l=n

(Vl+1 − 2Vl + Vl−1)

)

= Vn + (j − n)(Vn − Vn−1) +

j−1∑
i=n

(
i∑

l=n

k

Vl

)
. (6.13)

Now suppose that there is a n = 2, 3, . . . such that

Vj ≥Wj , for all j ≥ n. (6.14)

Then,

1

Vl
≤ 1

Wl
=

1

l(2k ln(l))
1
2

, l = n, n+ 1, . . . , (6.15)

and so by (6.13) for all j ≥ n,

Vj ≤ Vn + (j − n)(Vn − Vn−1) +
k

(2k)
1
2

j−1∑
i=n

(
i∑

l=n

1

l(ln(l))
1
2

)
. (6.16)

We use the Euler-Maclaurin formula in its simplest form: for h ∈ C2[n,∞), we have

i∑
l=n

h(l) =

∫ i

n

h(x)dx +
1

2
(h(i) + h(n)) +

1

12
(h′(i) − h′(n)) −

∫ i

n

h′′(x)
B2(x− bxc)

2
dx,

where B2(t) = (t− 1
2 )2 − 1

12 is the Bernoulli polynomial of degree 2 that satisfies |B2(t)| ≤ 1
6 , 0 ≤

t ≤ 1. Using this with h(x) = 1

x(ln(x))
1
2
, x ≥ 2, so that

h′(x) = − 1

x2(ln(x))
1
2

− 1

2x2(ln(x))
3
2

,

h′′(x) =
2

x3(ln(x))
1
2

+
3
2

x3(ln(x))
3
2

+
3
4

x3(ln(x))
5
2

,∫ i

n

h(x)dx =

∫ i

n

1

x(ln(x))
1
2

dx = 2(ln(i))
1
2 − 2(ln(n))

1
2 ,

we get

i∑
l=n

1

l(ln(l))
1
2

= 2(ln(i))
1
2 − 2(ln(n))

1
2 +O

(
1

n(ln(n))
1
2

)
. (6.17)

Next, from the Euler-Maclaurin formula with h(x) = (ln(x))
1
2 , we have

j−1∑
i=n

(ln(i))
1
2 =

∫ j−1

n

(ln(x))
1
2 dx+O

(
(ln(j))

1
2

)
, (6.18)
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and obviously

j−1∑
i=n

(
(ln(n))

1
2 +O

(
1

n(ln(n))
1
2

))
= (j − n)

(
(ln(n))

1
2 +O

(
1

n(ln(n))
1
2

))
. (6.19)

Thus, from (6.17) and (6.18), we can write the right-hand side of (6.16) as

Vn + (j − n)(Vn − Vn−1)+

k

(2k)
1
2

(
2

∫ j−1

n

(ln(x))
1
2 dx+O

(
(ln(j))

1
2

)
+ (j − n)

(
(ln(n))

1
2 +O

(
1

n(ln(n))
1
2

)))
,

which simplifies to

(2k)
1
2

∫ j−1

n

(ln(x))
1
2 dx+O(j). (6.20)

Next, we use the substitution u := (ln(x))
1
2 and partial integration, to obtain

∫ j−1

n

(ln(x))
1
2 dx =

∫ (ln(j−1))
1
2

(ln(n))
1
2

u · 2u exp(u2)du

=
[
u exp(u2)

](ln(j−1)) 1
2

(ln(n))
1
2
−
∫ (ln(j−1))

1
2

(ln(n))
1
2

exp(u2)du

= (j − 1)(ln(j − 1))
1
2 − n(ln(n))

1
2 −

∫ (ln(j−1))
1
2

(ln(n))
1
2

exp(u2)du.

Using the second elementary inequality (3.9) in Lemma 3.2, we conclude that∫ j−1

n

(ln(u))
1
2 du = j(ln(j))

1
2 +O

(
j

(ln(j))
1
2

)
, j →∞.

It thus follows from (6.16), (6.19) and (6.20) that

Vj ≤ (2k)
1
2 j(ln(j))

1
2 +O(j). (6.21)

Hence, from (6.15) and (6.21),

Vj = Wj

(
1 +O

(
1

(2k ln(j))
1
2

))
= Wj (1 + O(1)) , j →∞.

In a similar fashion, if there is an n = 2, 3, . . . such that

Vj ≤ j(2k ln(j))
1
2 , for all j ≥ n,

then

Vj ≥ j(2k ln(j))
1
2 +O(j),

which also yields

Vj = Wj(1 + O(1)), j →∞.
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7 Conclusion

Continuous and discrete Emden-Fowler type equations appear in many fields such as mathematical
physics, astrophysics and chemistry, but also in electrical engineering, and more specifically under
a popular power flow model. The specific Emden-Fowler equation we study, appears as a discrete
recursion that governs the voltages on a line network and as a continuous approximation of these
voltages. We show that the asymptotic behavior of the solution of the continuous Emden-Fowler
equation (1.2), i.e. the approximation of the discrete recursion, and the asymptotic behavior of
the solution of its discrete counterpart (1.3), are the same.
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Appendix A Proofs for Section 3.1

A.1 Proof of Lemma A.1

Lemma A.1. Let f(t) be given by (1.2). Then, we can alternatively write f(t) by

f ′(t)

(w2 + 2k ln(f(t)/y))
1
2

= 1, t ≥ 0, (A.1)

and ∫ (W 2+ln(f(t))/y))
1
2

(W 2−ln(y))
1
2

exp(v2)dv =
t

y

√
1

2
k exp(W 2), t ≥ 0, (A.2)

where W 2 := w2

2k .

Proof. From (1.2), we get

f ′(u)f ′′(u) = kf ′(u)/f(u), 0 ≤ u ≤ t. (A.3)

Integrating Equation (A.3) over u from 0 to t using f(0) = y, f ′(0) = w we get∫ t

0

f ′(u)f ′′(u)du =
1

2
(f ′(t))2 − 1

2
w2 =

∫ t

0

kf ′(u)

f(u)
= k ln(f(t)/y).

Hence, for t > 0,

f ′(t)

(w2 + 2k ln(f(t)/y))
1
2

= 1,

as desired. Integrating f ′(u)/(w2 + 2k ln(f(t)/y))
1
2 ) = 1 from u = 0 to u = t, while substituting

s = f(u) ∈ [1, f(t)], we get∫ t

0

df
ds

ds
du

(w2 + 2k ln(f(u)/y))
1
2

du =

∫ f(t)

1

1

(w2 + 2k ln(s/y))
1
2

ds = t. (A.4)

By introduction of W 2 = w2

2k , the expression becomes

1√
2k

∫ f(t)

1

1

(W 2 + ln(s/y))
1
2

ds = t. (A.5)
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Substituting v = (W 2 + ln(s/y))
1
2 , s = y exp(v2 −W 2), ds = 2s(W 2 + ln(s/y))

1
2 dv in the integral

(A.5), we get∫ (W 2+ln(f(t)/y))
1
2 )

(W 2−ln(y))
1
2

exp(v2)dv =
1

2
exp(W 2)

√
2k
t

y
=
t

y

√
1

2
k exp(W 2), t ≥ 0,

as desired. This concludes the proof.

A.2 Proof of Lemma A.2

Lemma A.2. Let k > 0. There exists a unique w ≥ 0 such that the solution of f(t)f ′′(t) = k, t ≥
0; f(0) = 1, f ′(0) = w satisfies f(1) = 1 + k.

Proof. Again, we rely on the representation of f in (A.14). Thus the condition f(1) = 1 + k can
be written as ∫ 1+k

1

1

(w2 + 2k ln(s))
1
2

ds = 1. (A.6)

The left-hand side of (A.6) decreases in w ≥ 0 from a value greater than
√

2 to 0 as w increases
from w = 0 to w =∞. Indeed, as to w = 0 we consider

F (k) =

∫ 1+k

1

1

(ln(s))
1
2

ds, k ≥ 0.

Then F (0) = 0 and F ′(k1) = (ln(1 + k1))−
1
2 > (k1)−

1
2 , k1 > 0, since 0 < ln(1 + k1) < k1 for

k1 > 0. Hence,

F (k) = F (0) +

∫ k

0

F ′(k1)dk1 >

∫ k

0

1√
k1
dk1 = 2

√
k, k > 0.

This implies that ∫ 1+k

1

1√
2k ln(s)

ds =
F (k)√

2k
>
√

2, k > 0.

That the left-hand side of (A.6) decreases strictly in w ≥ 0, to the value 0 at w =∞, is obvious.
We conclude that for any k > 0 there is a unique w > 0 such that (A.6) holds.

A.3 Proof of Theorem 3.2

Proof. From the definition of F in (3.19), it follows that F (t, k) = 0 if and only if f(t) = g(t).
Furthermore, we have

f(t) ≥ g(t), 1 ≤ t <∞ ⇐⇒ max
t≥1

F (t, k) ≤ 0. (A.7)

By Lemma A.3, we have, for any k, maxt≥1 F (t, k) = F (t0(k), k) and by Lemma A.4, we have
that F (t0(k), k) is a strictly decreasing function of k. Notice that, by (3.19), we can alternatively
write,

F (t0(k), k) =

∫ (W 2+ln(g(t0(k))))
1
2

(W 2+ln(f(t0(k))))
1
2

exp(v2)dv.

Thus, by Lemma A.6, we have on the one hand, for small k, that F (t0(k), k) > 0, and by Lemma
A.7, we have on the other hand, for large k, that F (t0(k), k) ≤ 0. Therefore, we conclude that
F (t0(k), k) ≤ 0 is equivalent to k ≥ kc.
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A.4 Proof of Lemma A.3

Lemma A.3. Let F (t, k) be given as in (3.19). Then, for any k,

max
t≥1

F (t, k) = F (t0(k), k),

where t0(k) is given by (3.17).

Proof. To find, for a given k > 0, the maximum of F (t, k) over t ≥ 1, we compute from (3.19)

∂F

∂t
(t, k) = −

√
k

2
exp(W 2) +

d

dt

(
(W 2 + ln(g(t)))

1
2

)
exp(W 2 + ln(g(t)))

=
1

2
(W 2 + ln(g(t)))−

1
2
g′(t)

g(t)
exp(W 2 + ln(g(t)))−

√
k

2
exp(W 2)

= exp(W 2)

(
1

2
(W 2 + ln(g(t)))−

1
2
g′(t)

g(t)
exp(ln(g(t)))−

√
k

2

)

= exp(W 2)

√
k

2

((√
1

2k

√
g′(t)2

W 2 + ln(g(t))

)
− 1

)

= exp(W 2)

√
k

2



√√√√ (

g′(t)√
2k

)2
W 2 + ln(g(t))

− 1

 . (A.8)

Then, using (6.4) in (A.8), we get

∂F

∂t
(t, k) = exp(W 2)

√
k

2

√ ψ(t)
2k + ln(g(t))

W 2 + ln(g(t))

− 1

 . (A.9)

Then, ∂F
∂t (t, k) = 0 if and only if ψ(t)

2k = W 2 or in other words, if and only if ψ(t) = w2. Recall
from (3.17) that the unique solution t > 1 of the equation ψ(t) = w2 is given by t0(k). Thus, we
have

∂F

∂t
(t0(k), k) = 0.

Since ψ(t) is strictly decreasing in t > 1, while W 2 does not depend on t, we have from (A.9) that
∂2F
∂t2 (t0(k), k) < 0. Hence, for k > 0,

max
t≥1

F (t, k) = F (t0(k), k),

which completes the proof.

A.5 Proof of Lemma A.4

Lemma A.4. Let F (t, k) be given as in (3.19). Then, F (t0(k), k) is a strictly decreasing function
of k, i.e.,

∂F

∂k
(t0(k), k) < 0, k > 0.
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Proof. We compute ∂F
∂k (t, k) for any t > 1, and set t = t0(k) in the resulting expression. Thus,

from (3.19),

∂F

∂k
(t, k) =

1

2
(W 2 + ln(g(t)))−

1
2
d

dk

(
W 2 + ln(

√
kt(2 ln(t))

1
2 )
)

exp(W 2 + ln(g(t)))−

−W ′ exp(W 2)− t

2
√

2k
exp(W 2)− t

√
1

2
k(W 2)′ exp(W 2).

Simplifying this expression, yields

∂F

∂k
(t, k) = exp(W 2)

(
1

2
g(t)(W 2 + ln(g(t)))−

1
2

(
(W 2)′ +

1

2k

)
−W ′ − t

2
√

2k
− t
√

1

2
k(W 2)′

)
.

From (W 2)′ = 2WW ′, we then have

∂F

∂k
(t, k) = exp(W 2)

(
(WW ′ + 1

4k )g(t)

(W 2 + ln(g(t)))
1
2

−W ′ − t

2
√

2k
− t
√

2kWW ′
)

= exp(W 2)

((
g(t)

(W 2 + ln(g(t)))
1
2

− t
√

2k

)
(WW ′ +

1

4k
)−W ′

)
. (A.10)

We next take t = t0(k) in (A.10), so that we can use that

g′(t0(k)) = (w2 + 2k ln(g(t0(k))))
1
2

and W 2 = w2

2k , and observe that

g(t)

(W 2 + ln(g(t)))
1
2

− t
√

2k =
√

2k

(
g(t)

(w2 + 2k ln(g(t)))
1
2

− t
)

=
√

2k

(
g(t)

g′(t)
− t
)

=
−t
√

2k

1 + 2 ln(t)
, t = t0(k).

We claim that,

∂F

∂k
(t0(k), k) = − exp(W 2)

(
t
√

2k

1 + 2 ln(t)
(WW ′ +

1

4k
+W ′)

)
, t = t0(k),

is negative since W (k) increases in k > 0, strictly. The latter fact is proven in Lemma A.5. We
conclude that F (t0(k), k) is a strictly decreasing function of k > 0.

Lemma A.5. Let f(t) be given by (3.2) with initial conditions f(0) = 1 and f ′(0) = w, where
w is such that f(1) = 1 + k. Furthermore, let W (k) = w√

2k
. Then, W (k) is a strictly increasing

function of k.

Proof. First, by Equation (A.4) with y = 1, we get∫ f(t)

1

1

(w2 + 2k ln(s))
1
2

ds = t. (A.11)

Second, from the fundamental theorem of calculus, we have

f(1) = 1 + w +

∫ 1

0

(∫ s

0

kdu

f(u)

)
ds. (A.12)
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Now, we derive the desired monotonicity property. We require f(1) = 1 + k. We get from (A.12),

w

k
= 1−

∫ 1

0

(∫ s

0

du

f(u)

)
ds. (A.13)

From, (A.11), with t = 1 and f(1) = 1 + k, we get∫ 1+k

1

1

(w2 + 2k ln(s))
1
2

ds = 1. (A.14)

From (A.14), noting that w = w(k), we get then

0 =
d

dk

(∫ 1+k

1

1

(w2(k) + 2k ln(s))
1
2

ds

)

=
1

(w2(k) + 2k ln(1 + k))
1
2

+

∫ 1+k

1

−1

2

2w(k)w′(k) + 2 ln(s)

(w2(k) + 2k ln(s))
3
2

ds

=
1

(w2(k) + 2k ln(1 + k))
1
2

− w(k)w′(k)

∫ 1+k

1

1

(w2(k) + 2k ln(s))
3
2

ds−

−
∫ 1+k

1

ln(s)

(w2(k) + 2k ln(s))
3
2

ds. (A.15)

Hence, rewriting (A.15) yields,

w(k)w′(k)

∫ 1+k

1

1

(w2(k) + 2k ln(s))
3
2

ds =
1

(w2(k) + 2k ln(1 + k))
1
2

−
∫ 1+k

1

ln(s)

(w2(k) + 2k ln(s))
3
2

ds. (A.16)

Consider the last term in (A.16). We have for 1 ≤ s ≤ 1 + k,

ln(s)

(w2(k) + 2k ln(s))
3
2

=
ln(s)

w2(k) + 2k ln(s)

1

(w2(k) + 2k ln(s))
1
2

≤ ln(1 + k)

w2(k) + 2k ln(1 + k)

1

(w2(k) + 2k ln(s))
1
2

. (A.17)

Therefore, by integrating over the inequality in (A.17), we get∫ 1+k

1

ln(s)

(w2(k) + 2k ln(s))
3
2

ds ≤ ln(1 + k)

w2(k) + 2k ln(1 + k)

∫ 1+k

1

1

(w2(k) + 2k ln(s))
1
2

ds

=
ln(1 + k)

w2(k) + 2k ln(1 + k)
,

where we used (A.14). Therefore, see (A.16),

w(k)w′(k)

∫ 1+k

1

1

(w2(k) + 2k ln(s))
3
2

ds ≥ 1

(w2(k) + 2k ln(1 + k))
1
2

− ln(1 + k)

w2(k) + 2k ln(1 + k)
> 0,

(A.18)

where the latter inequality follows from

(w2(k) + 2k ln(1 + k))
1
2 > (2k ln(1 + k))

1
2 > ln(1 + k),
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since u > ln(1 + u) for u > 0. We conclude from (A.18) that w(k) strictly increases in k > 0.

Next, we consider for a fixed t > 0 the identity (A.4). For any s > 1, the integrand
(
w2(k) + 2k ln(s)

)− 1
2

decreases strictly in k > 0, and hence f(t) = f(t; k) increases strictly in k > 0, since t > 0 is fixed.
As a consequence, we conclude from (A.13) that w(k)/k strictly increases in k > 0 since 1/f(u)
strictly decreases in k > 0 for any u ∈ (0, 1).

A.6 Proof of Lemma A.6

Lemma A.6. Let F (t, k) be given as in (3.19). Then, for small k, we have that F (t0(k), k) > 0.

Proof. We have for t > 0,

f(t) = f(0) + tf ′(0) +
1

2
t2f ′′(ξt)

= 1 + tw +
1

2
t2

k

f(ξt)
,

where ξt is a number between 0 and t. Since f(1) = 1+k and f(ξt) ≥ 1 > 0, it follows that w ≤ k.
Therefore,

f

(
1√
k

)
≤ 1 +

w√
k

+
1

2k
k ≤ 3

2
+
√
k.

On the other hand

g

(
1√
k

)
=

1√
k

(
2k ln(

1√
k

)

) 1
2

= (− ln(k))
1
2 ,

and this exceeds 3
2 +
√
k when k is small enough. Numerically, by solving the equation (− ln(k))

1
2 =

3
2+
√
k for k > 0, we find that k < 0.05 is small enough. We conclude from (3.19) that F (t0(k), k) ≥

F
(

1√
k
, k
)
> 0 when k is small.

A.7 Proof of Lemma A.7

Lemma A.7. Let F (t, k) be given as in (3.19). Then, for large k, we have that F (t0(k), k) ≤ 0.

Proof. We show that f(t) ≥ g(t) for all t ≥ 1 when k is large enough. We have f(1) = 1 + k >
0 = g(1). Now suppose that there is a t > 1 such that f(t) < g(t). Then there is also a t1 > 1
such that f(t1) = g(t1) and f ′(t1) ≤ g′(t1). We infer, by the derivatives of the functions f and g
given in Equations (A.1) and (6.4), with (3.16), from f(t1) = g(t1) and f ′(t1) ≤ g′(t1), that

w2 ≤ 2k +
k

2 ln(t)
− k ln(2k ln(t)) = ψ(t) at t = t1. (A.19)

At the same time, we have by convexity of f(t), 0 ≤ t <∞, and f(1) = 1 + k that

f(t) ≥ 1 + tk, t ≥ 1.

Hence, when 1
2k ≥ ln(t), we have

f(t) ≥ 1 + tk > tk = t

(
2k · 1

2
k

) 1
2

≥ t(2k ln(t))
1
2 = g(t).
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Since f(t1) = g(t1), we thus have that t1 > exp( 1
2k). The right-hand side of (A.19) decreases in

t > 1, since the function ψ(t) is strictly decreasing, and its value at t = t1 is therefore less than

2k +
k

2 · 12k
− k ln(2k · 1

2
k) = 2k + 1− 2k ln(k).

Since 2k + 1 − 2k ln(k) < 0 for large k, (A.19) cannot hold for large k. Numerically, by solving
the equation 2k+ 1− 2k ln(k) = 0, for k > 0, we find that k > 3.2 is large enough. This gives the
result.

A.8 Proof of Theorem 3.3

Proof. Let f(t) = f(t; k) be given by (3.2) with initial conditions f(0) = 1, f ′(0) = w such that
f(1) = 1 + k, and let g(t) = g(t; k) be given by (3.15). Before we turn to the proof of inequalities
(3.20) and (3.21), we first state some numerical results obtained by Newton’s method: the unique
number kc that determines whether the ratio of f and g is positive or not, is given by kc =
1.0384, the corresponding value of w such that f(1) = 1 + kc is given by w(kc) = 0.6218 and the
corresponding solution to the equation ψ(t0(kc)) = w(kc)

2 is given by t0(kc) = t2(kc) = 18.3798.
Furthermore, by Newton’s method, we have that

f0(x)

g(x; 1)
≤ 1, x1 ≤ x ≤ x2;

f0(x)

g(x; 1)
> 1, 1 ≤ x < x1 or x > x2,

where x1 = 2.4556 and x2 = 263.0304, and g(x; k) = (2k)
1
2x(ln(x))

1
2 . Additionally, the minimum

of the ratio f0(x) and g(x; 1) is given by

min
x≥1

f0(x)

g(x; 1)
= min
x1≤x≤x2

f0(x)

x(2 ln(x))
1
2

≈ 0.8829, (A.20)

and is attained at xmin = 5.7889. The maximum of the ratio f0(x) and g(x; 1) is given by

max
x≥1

f0(x)

g(x; 1)
≈ 1.0223,

and is attained at xmax = 380223. However, the computation of the maximum of the ratio of f0(x)
and g(x; 1) is much more involved than the computation of the minimum of the ratio of f0(x) and
g(x; 1), because evaluation of the function f0(x) for large entries is difficult. In Lemma A.8, we
content ourselves with a reasonably sharp upper bound on the maximum of the ratio of f0(x) and
g(x; 1) over x ≥ x2.

We now turn to the proof of inequality (3.20). We consider two regimes, i.e., t1(k) ≤ t ≤
√

2/k

and t ≥
√

2/k. We have for t1(k) ≤ t ≤
√

2/k,

f(t; k)

g(t; k)
≥ 1

t(2k ln(t))
1
2

≥ 1√
2/k

(
2k ln(

√
2/k)

) 1
2

=
1

2(ln(
√

2/k))
1
2

, (A.21)
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where we used that f(t; k), with f(0; k) = 1 and g(t; k) = (2k)
1
2 t(ln(t))

1
2 are positive, increasing

functions of t > 1. Next, we let t ≥
√

2/k. We have

f(t; k)

g(t; k)
=
cf0(a+ bt)

t
√

2k ln(t)

=
f0(a+ bt)

g(a+ bt; 1)

ac+ bct

t
√
k

√
ln(a+ bt)

ln(t)
. (A.22)

We consider each factor in the right-hand side of (A.22) separately. For the first factor, we use
the numerical result that the minimum of the ratio of the functions f0 and g is given in (A.20).
For the second and third factor, we notice, from (3.5)–(3.7) and t ≥

√
2/k, that

a > 0, b >
√
k, bc =

√
k, a+ bt ≥

√
k
√

2/k =
√

2. (A.23)

Hence, for the second factor, we get

ac+ bct

t
√
k

>

√
kt

t
√
k

= 1,

and for the third factor,

min
t≥
√

2/k

ln(a+ bt)

ln(t)
> min
t≥
√

2/k

ln(t
√
k)

ln(t)
. (A.24)

However, the right-hand side of (A.24) is equal to 1 when k ≥ 1, and equal to ln
√
2

ln
√

2/k
when

0 < k < 1. Therefore,

min
t≥
√

2/k

ln(t
√
k)

ln(t)
≥

ln(
√

2/kc)

ln(
√

2/k)

when 0 < k ≤ kc. Hence, combining the inequalities for each factor in (A.22), we get, for t ≥
√

2/k,

f(t; k)

g(t; k)
≥ 0.8829 · 1 ·

 ln
(√

2/kc

)
ln
(√

2/k
)


1
2

=
0.5055(

ln(
√

2/k)
) 1

2

.

Together with (A.21) this gives the desired result.

Now, we turn to the proof of inequality (3.21). We follow the same approach as in the proof of
inequality (3.20). Thus, we consider each factor of the right-hand side of (A.22) separately. The
right-hand side of (A.22) is now to be considered for t ≥ t2(k), and so it is important to have
specific information about t2(k). We claim that t2(k) ≥ exp(e2−kc/2k). This claim is proven in
Lemma A.9 below.

We consider x = a+ bt with t ≥ t2(k). Now, by the first two inequalities in (A.23), we get

a+ bt2(k) >
√
k exp(e2−kc/2k).

Notice that the function k > 0 7→
√
k exp(e2−kc/2k) is a decreasing function of k for 0 < k ≤ kc,

and therefore,

a+ bt2(k) >
√
kc exp(e2−kc/2kc) ≈ 3.5909 > x1.
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Hence, it is sufficient to bound the function f0(x)/g(x; 1) for x ≥ x2. Furthermore, by Lemma
A.8, we have

f0(x)

g(x; 1)
≤ 1.12.

For the second factor, we notice, since bc =
√
k, that we have

ac+ bct

t
√
k

= 1 +
ac

t
√
k
.

Now, from (3.5) and (3.7),

ac√
k

=
1√
k

√
2

∫ w√
2k

0

exp(v2)dv · exp(−w2/2k)

≤ 1√
k

√
2 · w√

2k
=
w

k

≤ w(kc)

kc
≈ 0.5988,

where in the last line it has been used that w/k is an increasing function of k; see Lemma A.5.
Hence, for all k ≤ kc and all t ≥ t2(k) ≥ t0(k), we can bound the second factor by

ac+ bct

t
√
k
≤ 1 +

w(kc)

kct0(kc)
≈ 1.0326.

For the third factor, we have by (3.5),

a =
√

2

∫ w√
2k

0

exp(v2)dv ≤ w√
k

exp(w2/2k).

Hence, by (3.6),

ln(a+ bt) ≤ w2

2k
+ ln

((w
k

+ t
)√

k
)

≤ w2(kc)

2kc
+ ln

((
w(kc)

kc
+ t

)√
k

)
.

Therefore, for all t ≥ t2(k),

(
ln(a+ bt)

ln(t)

) 1
2

≤

 w2(kc)
2kc

+ ln
(

(w(kc)
kc

+ t)
√
k
)

ln(t)


≤

1 +

w2(kc)
2kc

+ ln(
√
k) + w(kc)

tkc

ln(t)

 1
2

≤

1 +

w2(kc)
2kc

+ ln(
√
kc) + w(kc)

t0(kc)kc

ln(t0(kc))

 1
2

≈ 1.0400.

Combining all inequalities for each factor in (A.22), we get

f(t; k)

g(t; k)
≤ 1.12 · 1.0326 · 1.0400 ≈ 1.2023.
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Lemma A.8. Let f0(x) be given by (3.3) and let g(x; 1) be given by g(x; 1) = x(2 ln(x))
1
2 . Then,

f0(x)

g(x; 1)
≤ 1.12, x ≥ x2.

Proof. From (3.3),(3.4) and the first inequality of (3.9), we have for x > 0

x√
2

=

∫ (ln(f0(x)))
1
2

0

exp(u2)du ≥ f0(x)− 1

2(ln(f0(x)))
1
2

,

i.e.,

f0(x) ≤ 1 + x(2 ln(f0(x))
1
2 . (A.25)

Let x > 0 be fixed and consider the mapping

G : z ≥ 1 7→ 1 + x(2 ln(z))
1
2 .

Then G maps [1,∞) onto [1,∞) with G(1) = 1 and G(∞) = ∞, G is strictly concave on [1,∞),
and G′(z) decreases from ∞ to 0 as z increases from 1 to ∞. Therefore, G has a unique fixed
point z(x) in (1,∞). We have for any z1 > 1, z2 > 1 that

z1 ≤ z(x) ⇐⇒ z1 ≤ 1 + x(2 ln(z1))
1
2 , z2 ≥ z(x) ⇐⇒ z2 ≥ 1 + x(2 ln(z2))

1
2 . (A.26)

Note that f0(x) ≤ z(x) by (A.25). Now let α > 1 and consider z2 = 1 + αg(x; 1), where we take

α such that z2 ≥ 1 + x(2 ln(z2))
1
2 . An easy computation shows that with this z2 = 1 + αg(x; 1),

z2 ≥ 1 + x(2 ln(z2))
1
2 ⇐⇒ g(x; 1) ≤ xα

2 − 1

α
. (A.27)

We consider all this for x ≥ x2 = 263.0340. We have

g(x2; 1) = x2(2 ln(x2))
1
2 =

xα
2

2 − 1

α

for α = 1.1115 := α2. Furthermore, when we have an x ≥ x2 such that g(x; 1) ≤ 1
α (xα

2 − 1), we
have

d

dx

[
1

α
(xα

2

− 1)

]
=
α

x
xα

2

≥ α

x
(1 + αg(x; 1))

=
α

x
+
α2

x
x(2 ln(x))

1
2

> α2(2 ln(x))
1
2

≥ (2 ln(x))
1
2 +

1

(2 ln(x))
1
2

= g′(x; 1),

where the last inequality holds when α2 − 1 ≥ 1
2 ln(x) . The latter inequality certainly holds for

α = α2 and x ≥ x2. Hence,

g(x2; 1) =
x
α2

2
2 − 1

α2
; g′(x; 1) <

d

dx

[
1

α2
(xα

2
2 − 1)

]
, x ≥ x2,

and we conclude that

g(x; 1) ≤ xα
2
2 − 1

α2
, x ≥ x2.
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Then, by (A.26) and (A.27) and f0(x) ≤ z(x), we get that

z2 = 1 + α2g(x; 1) ≥ z(x) ≥ f(x), x ≥ x2.

This implies that

f0(x)

g(x; 1)
≤ α2 +

1

g(x; 1)
≤ α2 +

1

g(x2; 1)
≤ 1.12, x ≥ x2,

since α2 ≤ 1.112 and (g(x2; 1))−1 ≤ 0.008 as required.

Lemma A.9. Let f(t) be given by (3.2) with initial conditions f(0) = 1, f ′(0) = w such that
f(1) = 1 + k, and let g(t) be given by (3.15) for 0 < k ≤ kc. Then,

t2(k) ≥ exp

(
e2−kc

2k

)
,

where t2(k) is given as in Theorem 3.2, case b.

Proof. Let f(t) be given by (3.2) with initial conditions f(0) = 1, f ′(0) = w such that f(1) = 1+k,
and let g(t) be given by (3.15). By Theorem 3.2 case (b), we have t2(k) ≥ t0(k), where t0(k) is
the unique root of the equation

2 +
1

2 ln(t)
− ln(2k ln(t)) =

w2

k
, (A.28)

see (3.17). If we denote y = 2 ln(t0(k)), then the solution y(k) of (A.28) satisfies

y(k) >
1

k
exp

(
2− w2

k

)
≥ 1

k
exp(2− w2(kc)

kc
) ≥ 1

k
exp(2− kc),

since w2

k increases in k and w2 ≤ k2. Now, using that y = 2 ln(t0(k)), we get

t0(k) ≥ exp

(
e2−kc

2k

)
.

Since t2(k) ≥ t0(k), we have the desired result.
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