2,428 research outputs found
Symmetry and Z_2-Orbifolding Approach in Five-dimensional Lattice Gauge Theory
In a lattice gauge-Higgs unification scenario using a Z_2-orbifolded
extra-dimension, we find a new global symmetry in a case of SU(2) bulk gauge
symmetry. It is a global symmetry on sites in a fixed point with respect to
Z_2-orbifolding, independent of the bulk gauge symmetry. It is shown that the
vacuum expectation value of a Z_2-projected Polyakov loop is a good order
parameter of the new symmetry. The effective theory on lattice is also
discussed.Comment: 13 pages, 3 figures; refined the explanation
Structural and functional conservation of key domains in InsP3 and ryanodine receptors.
Inositol-1,4,5-trisphosphate receptors (InsP(3)Rs) and ryanodine receptors (RyRs) are tetrameric intracellular Ca(2+) channels. In each of these receptor families, the pore, which is formed by carboxy-terminal transmembrane domains, is regulated by signals that are detected by large cytosolic structures. InsP(3)R gating is initiated by InsP(3) binding to the InsP(3)-binding core (IBC, residues 224-604 of InsP(3)R1) and it requires the suppressor domain (SD, residues 1-223 of InsP(3)R1). Here we present structures of the amino-terminal region (NT, residues 1-604) of rat InsP(3)R1 with (3.6 Å) and without (3.0 Å) InsP(3) bound. The arrangement of the three NT domains, SD, IBC-β and IBC-α, identifies two discrete interfaces (α and β) between the IBC and SD. Similar interfaces occur between equivalent domains (A, B and C) in RyR1 (ref. 9). The orientations of the three domains when docked into a tetrameric structure of InsP(3)R and of the ABC domains docked into RyR are remarkably similar. The importance of the α-interface for activation of InsP(3)R and RyR is confirmed by mutagenesis and, for RyR, by disease-causing mutations. Binding of InsP(3) causes partial closure of the clam-like IBC, disrupting the β-interface and pulling the SD towards the IBC. This reorients an exposed SD loop ('hotspot' (HS) loop) that is essential for InsP(3)R activation. The loop is conserved in RyR and includes mutations that are associated with malignant hyperthermia and central core disease. The HS loop interacts with an adjacent NT, suggesting that activation re-arranges inter-subunit interactions. The A domain of RyR functionally replaced the SD in full-length InsP(3)R, and an InsP(3)R in which its C-terminal transmembrane region was replaced by that from RyR1 was gated by InsP(3) and blocked by ryanodine. Activation mechanisms are conserved between InsP(3)R and RyR. Allosteric modulation of two similar domain interfaces within an N-terminal subunit reorients the first domain (SD or A domain), allowing it, through interactions of the second domain of an adjacent subunit (IBC-β or B domain), to gate the pore
Coexistence of α+α+n+n and α+t+t cluster structures in 10Be
The coexistence of the α+α+n+n and α+t+t cluster structures in the excited states of 10Be has been discussed. In the previous analysis, all the low-lying states of 10Be were found to be well described by the motion of the two valence neutrons around two α clusters. However, the α+t+t cluster structure was found to coexist with the α+α+n+n structure around Ex=15 MeV, close to the corresponding threshold. We have introduced a microscopic model to solve the coupling effect between these two configurations. The K=0 and K=1 states are generated from the α+t+t configurations due to the spin coupling of two triton clusters. The present case of 10Be is one of the few examples in which completely different configurations of triton-type (α+t+t three-center) and α-type (α+α+n+n two-center) clusters coexist in a single nucleus in the same energy region
Fundamental Study on Application of Magnetic Levitation Using YBCO Bulk Superconductor to Fusion Research
Gravitational Nanolensing from Subsolar Mass Dark Matter Halos
We investigate the feasibility of extracting the gravitational nanolensing
signal due to the presence of subsolar mass halos within galaxy-sized dark
matter halos. We show that subsolar mass halos in a lensing galaxy can cause
strong nanolensing events with shorter durations and smaller amplitudes than
microlensing events caused by stars. We develop techniques that can be used in
future surveys such as Pan-STARRS, LSST and OMEGA to search for the nanolensing
signal from subsolar mass halos.Comment: 12 pages, 10 figures. Replaced with version accepted for publication
in ApJ. Very minor changes from version
Formulation and constraints on decaying dark matter with finite mass daughter particles
Decaying dark matter cosmological models have been proposed to remedy the
overproduction problem at small scales in the standard cold dark matter
paradigm. We consider a decaying dark matter model in which one CDM mother
particle decays into two daughter particles, with arbitrary masses. A complete
set of Boltzmann equations of dark matter particles is derived which is
necessary to calculate the evolutions of their energy densities and their
density perturbations. By comparing the expansion history of the universe in
this model and the free-streaming scale of daughter particles with astronomical
observational data, we give constraints on the lifetime of the mother particle,
, and the mass ratio between the daughter and the mother particles
. From the distance to the last scattering surface of the
cosmic microwave background, we obtain 30 Gyr in the massless
limit of daughter particles and, on the other hand, we obtain
0.97 in the limit . The free-streaming constraint
tightens the bound on the mass ratio as for .Comment: 20 pages, 7 figure
Band Calculation for Ce-compounds on the basis of Dynamical Mean Field Theory
The band calculation scheme for electron compounds is developed on the
basis of the dynamical mean field theory (DMFT) and the LMTO method. The
auxiliary impurity problem is solved by a method named as NCAv', which
includes the correct exchange process of the virtual
excitation as the vertex correction to the non-crossing approximation (NCA) for
the fluctuation. This method leads to the correct magnitude
of the Kondo temperature, , and makes it possible to carry out
quantitative DMFT calculation including the crystalline field (CF) and the
spin-orbit (SO) splitting of the self-energy. The magnetic excitation spectra
are also calculated to estimate . It is applied to Ce metal and CeSb
at T=300 K as the first step. In Ce metal, the hybridization intensity (HI)
just below the Fermi energy is reduced in the DMFT band. The photo-emission
spectra (PES) have a conspicuous SO side peak, similar to that of experiments.
is estimated to be about 70 K in -Ce, while to be about
1700 K in -Ce. In CeSb, the double-peak-like structure of PES is
reproduced. In addition, which is not so low is obtained because HI
is enhanced just at the Fermi energy in the DMFT band.Comment: 30pages, 18 figure
Vortex Lattice Structures of a Bose-Einstein Condensate in a Rotating Lattice Potential
We study vortex lattice structures of a trapped Bose-Einstein condensate in a
rotating lattice potential by numerically solving the time-dependent
Gross-Pitaevskii equation. By rotating the lattice potential, we observe the
transition from the Abrikosov vortex lattice to the pinned lattice. We
investigate the transition of the vortex lattice structure by changing
conditions such as angular velocity, intensity, and lattice constant of the
rotating lattice potential.Comment: 6 pages, 8 figures, submitted to Quantum Fluids and Solids Conference
(QFS 2006
Change of Electronic Structure Induced by Magnetic Transitions in CeBi
The temperature dependence of the electronic structure of CeBi arising from
two types of antiferromagnetic transitions based on optical conductivity
() was observed. The spectrum continuously and
discontinuously changes at 25 and 11 K, respectively. Between these
temperatures, two peaks in the spectrum rapidly shift to the opposite energy
sides as the temperature changes. Through a comparison with the band
calculation as well as with the theoretical spectrum, this
peak shift was explained by the energy shift of the Bi band due to the
mixing effect between the Ce and Bi states. The single-layer
antiferromagnetic () transition from the paramagnetic state was concluded
to be of the second order. The marked changes in the spectrum
at 11 K, however, indicated the change in the electronic structure was due to a
first-order-like magnetic transition from a single-layer to a double-layer
() antiferromagnetic phase.Comment: 4 pages, to be published in J. Phys. Soc. Jpn. 73 Aug. (2004
- …
