17,431 research outputs found

    Analytic structure of Bloch functions for linear molecular chains

    Full text link
    This paper deals with Hamiltonians of the form H=-{\bf \nabla}^2+v(\rr), with v(\rr) periodic along the zz direction, v(x,y,z+b)=v(x,y,z)v(x,y,z+b)=v(x,y,z). The wavefunctions of HH are the well known Bloch functions \psi_{n,\lambda}(\rr), with the fundamental property ψn,λ(x,y,z+b)=λψn,λ(x,y,z)\psi_{n,\lambda}(x,y,z+b)=\lambda \psi_{n,\lambda}(x,y,z) and ∂zψn,λ(x,y,z+b)=λ∂zψn,λ(x,y,z)\partial_z\psi_{n,\lambda}(x,y,z+b)=\lambda \partial_z\psi_{n,\lambda}(x,y,z). We give the generic analytic structure (i.e. the Riemann surface) of \psi_{n,\lambda}(\rr) and their corresponding energy, En(λ)E_n(\lambda), as functions of λ\lambda. We show that En(λ)E_n(\lambda) and ψn,λ(x,y,z)\psi_{n,\lambda}(x,y,z) are different branches of two multi-valued analytic functions, E(λ)E(\lambda) and ψλ(x,y,z)\psi_\lambda(x,y,z), with an essential singularity at λ=0\lambda=0 and additional branch points, which are generically of order 1 and 3, respectively. We show where these branch points come from, how they move when we change the potential and how to estimate their location. Based on these results, we give two applications: a compact expression of the Green's function and a discussion of the asymptotic behavior of the density matrix for insulating molecular chains.Comment: 13 pages, 11 figure

    Operations and single particle interferometry

    Full text link
    Interferometry of single particles with internal degrees of freedom is investigated. We discuss the interference patterns obtained when an internal state evolution device is inserted into one or both the paths of the interferometer. The interference pattern obtained is not uniquely determined by the completely positive maps (CPMs) that describe how the devices evolve the internal state of a particle. By using the concept of gluing of CPMs, we investigate the structure of all possible interference patterns obtainable for given trace preserving internal state CPMs. We discuss what can be inferred about the gluing, given a sufficiently rich set of interference experiments. It is shown that the standard interferometric setup is limited in its abilities to distinguish different gluings. A generalized interferometric setup is introduced with the capacity to distinguish all gluings. We also connect to another approach using the well known fact that channels can be realized using a joint unitary evolution of the system and an ancillary system. We deduce the set of all such unitary `representations' and relate the structure of this set to gluings and interference phenomena.Comment: Journal reference added. Material adde

    Spectral resolution of the Liouvillian of the Lindblad master equation for a harmonic oscillator

    Full text link
    A Lindblad master equation for a harmonic oscillator, which describes the dynamics of an open system, is formally solved. The solution yields the spectral resolution of the Liouvillian, that is, all eigenvalues and eigenprojections are obtained. This spectral resolution is discussed in depth in the context of the biorthogonal system and the rigged Hilbert space, and the contribution of each eigenprojection to expectation values of physical quantities is revealed. We also construct the ladder operators of the Liouvillian, which clarify the structure of the spectral resolution.Comment: 22pages, no figure; title changed, minor corrections, references added; minor correction

    On the VLSI design of a pipeline Reed-Solomon decoder using systolic arrays

    Get PDF
    A new very large scale integration (VLSI) design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous article is replaced by a time domain algorithm through a detailed comparison of their VLSI implementations. A new architecture that implements the time domain algorithm permits efficient pipeline processing with reduced circuitry. Erasure correction capability is also incorporated with little additional complexity. By using a multiplexing technique, a new implementation of Euclid's algorithm maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and significant reduction in silicon area

    Local energy decay of massive Dirac fields in the 5D Myers-Perry metric

    Full text link
    We consider massive Dirac fields evolving in the exterior region of a 5-dimensional Myers-Perry black hole and study their propagation properties. Our main result states that the local energy of such fields decays in a weak sense at late times. We obtain this result in two steps: first, using the separability of the Dirac equation, we prove the absence of a pure point spectrum for the corresponding Dirac operator; second, using a new form of the equation adapted to the local rotations of the black hole, we show by a Mourre theory argument that the spectrum is absolutely continuous. This leads directly to our main result.Comment: 40 page

    Long-Time Dynamics of Variable Coefficient mKdV Solitary Waves

    Full text link
    We study the Korteweg-de Vries-type equation dt u=-dx(dx^2 u+f(u)-B(t,x)u), where B is a small and bounded, slowly varying function and f is a nonlinearity. Many variable coefficient KdV-type equations can be rescaled into this equation. We study the long time behaviour of solutions with initial conditions close to a stable, B=0 solitary wave. We prove that for long time intervals, such solutions have the form of the solitary wave, whose centre and scale evolve according to a certain dynamical law involving the function B(t,x), plus an H^1-small fluctuation.Comment: 19 page

    Propagators weakly associated to a family of Hamiltonians and the adiabatic theorem for the Landau Hamiltonian with a time-dependent Aharonov-Bohm flux

    Full text link
    We study the dynamics of a quantum particle moving in a plane under the influence of a constant magnetic field and driven by a slowly time-dependent singular flux tube through a puncture. The known adiabatic results do not cover these models as the Hamiltonian has time dependent domain. We give a meaning to the propagator and prove an adiabatic theorem. To this end we introduce and develop the new notion of a propagator weakly associated to a time-dependent Hamiltonian.Comment: Title and Abstract changed, will appear in Journal of Mathematical Physic

    Covariant Affine Integral Quantization(s)

    Full text link
    Covariant affine integral quantization of the half-plane is studied and applied to the motion of a particle on the half-line. We examine the consequences of different quantizer operators built from weight functions on the half-plane. To illustrate the procedure, we examine two particular choices of the weight function, yielding thermal density operators and affine inversion respectively. The former gives rise to a temperature-dependent probability distribution on the half-plane whereas the later yields the usual canonical quantization and a quasi-probability distribution (affine Wigner function) which is real, marginal in both momentum p and position q.Comment: 36 pages, 10 figure

    Boundary effect of a partition in a quantum well

    Get PDF
    The paper wishes to demonstrate that, in quantum systems with boundaries, different boundary conditions can lead to remarkably different physical behaviour. Our seemingly innocent setting is a one dimensional potential well that is divided into two halves by a thin separating wall. The two half wells are populated by the same type and number of particles and are kept at the same temperature. The only difference is in the boundary condition imposed at the two sides of the separating wall, which is the Dirichlet condition from the left and the Neumann condition from the right. The resulting different energy spectra cause a difference in the quantum statistically emerging pressure on the two sides. The net force acting on the separating wall proves to be nonzero at any temperature and, after a weak decrease in the low temperature domain, to increase and diverge with a square-root-of-temperature asymptotics for high temperatures. These observations hold for both bosonic and fermionic type particles, but with quantitative differences. We work out several analytic approximations to explain these differences and the various aspects of the found unexpectedly complex picture.Comment: LaTeX (with iopart.cls, iopart10.clo and iopart12.clo), 28 pages, 17 figure

    Wave operator bounds for 1-dimensional Schr\"odinger operators with singular potentials and applications

    Get PDF
    Boundedness of wave operators for Schr\"odinger operators in one space dimension for a class of singular potentials, admitting finitely many Dirac delta distributions, is proved. Applications are presented to, for example, dispersive estimates and commutator bounds.Comment: 16 pages, 0 figure
    • 

    corecore