research

Analytic structure of Bloch functions for linear molecular chains

Abstract

This paper deals with Hamiltonians of the form H=-{\bf \nabla}^2+v(\rr), with v(\rr) periodic along the zz direction, v(x,y,z+b)=v(x,y,z)v(x,y,z+b)=v(x,y,z). The wavefunctions of HH are the well known Bloch functions \psi_{n,\lambda}(\rr), with the fundamental property ψn,λ(x,y,z+b)=λψn,λ(x,y,z)\psi_{n,\lambda}(x,y,z+b)=\lambda \psi_{n,\lambda}(x,y,z) and zψn,λ(x,y,z+b)=λzψn,λ(x,y,z)\partial_z\psi_{n,\lambda}(x,y,z+b)=\lambda \partial_z\psi_{n,\lambda}(x,y,z). We give the generic analytic structure (i.e. the Riemann surface) of \psi_{n,\lambda}(\rr) and their corresponding energy, En(λ)E_n(\lambda), as functions of λ\lambda. We show that En(λ)E_n(\lambda) and ψn,λ(x,y,z)\psi_{n,\lambda}(x,y,z) are different branches of two multi-valued analytic functions, E(λ)E(\lambda) and ψλ(x,y,z)\psi_\lambda(x,y,z), with an essential singularity at λ=0\lambda=0 and additional branch points, which are generically of order 1 and 3, respectively. We show where these branch points come from, how they move when we change the potential and how to estimate their location. Based on these results, we give two applications: a compact expression of the Green's function and a discussion of the asymptotic behavior of the density matrix for insulating molecular chains.Comment: 13 pages, 11 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 01/04/2019