863 research outputs found
Aging, rejuvenation and memory effects in re-entrant ferromagnets
We have studied the slow dynamics of the ferromagnetic phases of the
re-entrant CdCr_{2x}In_{2-2x}S_4 system for 0.85<x<=1 by means of low frequency
ac susceptibility and magnetization measurements. Experimental procedures
widely used in the investigation of the out-of-equilibrium dynamics of spin
glasses (such as the x=0.85 compound) have been applied to search for aging,
rejuvenation and memory effects, and to test their dependence on the disorder
introduced by dilution of the magnetic ions. Whereas the rejuvenation effect is
found in all studied samples, the memory effect is clearly enhanced for
increasing dilutions. The results support a description of aging in both
ferromagnetic and re-entrant spin-glass phases in terms of hierarchical
reconformations of domain walls pinned by the disorder.Comment: Service de Physique de l'Etat Condense, DRECAM, DSM, CEA Saclay,91191
Gif sur Yvette Cedex, France, 9 pages, including 7 figures, To appear in Eur.
Phys. J. B (2002
A new experimental procedure for characterizing quantum effects in small magnetic particle systems
A new experimental procedure is discussed, which aims at separating thermal
from quantum behavior independently of the energy barrier distribution in small
particle systems.
Magnetization relaxation data measured between 60 mK and 5 K on a sample of
nanoparticles is presented. The comparison between experimental data and
numerical calculations shows a clear departure from thermal dynamics for our
sample, which was not obvious without using the new procedure presented here.Comment: LaTeX source, 6 pages, 5 PostScript figure
Aging phenomena in spin glass and ferromagnetic phases: domain growth and wall dynamics
We compare aging in a disordered ferromagnet and in a spin glass, by studying
the different phases of a reentrant system. We have measured the relaxation of
the low-frequency ac susceptibility, in both the ferromagnetic and spin-glass
phases of a CdCr_{1.9}In_{0.1}S_4 sample. A restart of aging processes when the
temperature is lowered (`chaos-like' effect) is observed in both phases. The
memory of previous aging at a higher temperature can be retrieved upon
re-heating, but in the ferromagnetic phase it can rapidly be erased by the
growth of ferromagnetic domains. We interpret the behaviour observed in the
ferromagnetic phase in terms of a combination of domain growth and pinned wall
reconformations, and suggest that aging in spin glasses is dominated by such
wall reconformation processes.Comment: SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex, France, to appear in
Europhys. Lett. (2000
Step size of the rotary proton motor in single FoF1-ATP synthase from a thermoalkaliphilic bacterium by DCO-ALEX FRET
Thermophilic enzymes can operate at higher temperatures but show reduced
activities at room temperature. They are in general more stable during
preparation and, accordingly, are considered to be more rigid in structure.
Crystallization is often easier compared to proteins from bacteria growing at
ambient temperatures, especially for membrane proteins. The ATP-producing
enzyme FoF1-ATP synthase from thermoalkaliphilic Caldalkalibacillus thermarum
strain TA2.A1 is driven by a Fo motor consisting of a ring of 13 c-subunits. We
applied a single-molecule F\"orster resonance energy transfer (FRET) approach
using duty cycle-optimized alternating laser excitation (DCO-ALEX) to monitor
the expected 13-stepped rotary Fo motor at work. New FRET transition histograms
were developed to identify the smaller step sizes compared to the 10-stepped Fo
motor of the Escherichia coli enzyme. Dwell time analysis revealed the
temperature and the LDAO dependence of the Fo motor activity on the single
molecule level. Back-and-forth stepping of the Fo motor occurs fast indicating
a high flexibility in the membrane part of this thermophilic enzyme.Comment: 14 pages, 7 figure
Disentangling Distribution Effects and Nature of the Dynamics in Relaxation Measurements: the RMR Method
URL: http://www-spht.cea.fr/articles/s00/004 (sur invitation). Comment séparer les effets de distribution et la nature de la dynamique dans des mesures de relaxation magnétiques: la méthode RMRWe discuss here the nature of the low temperature magnetic relaxation in samples of magnetic nanoparticles. In addition to usual magnetic viscosity measurement, we have used the Residual Memory Ratio (RMR) method. This procedure enables us to overcome the uncertainties usually associated with the energy barrier distribution, thus giving a more detailed insight on the nature of the observed dynamics. A custom made apparatus coupling dilution refrigeration and SQUID magnetometry allowed measurements of very diluted samples at temperatures ranging between 60mK and 7K. Two types of particles have been studied: -FeO of moderate anisotropy, and CoFeO of higher anisotropy where quantum effects are more likely to occur. In both cases, the data cannot simply be interpreted in terms of mere thermally activated dynamics of independent particles. The deviation from thermal activation seems to go opposite of what is expected from the possible effect of particle interactions. We therefore believe that it suggests the occurrence of quantum dynamics at very low temperatures
Low-Temperature Features of Nano-Particle Dynamics
In view of better characterizing possible quantum effects in the dynamics of
nanometric particles, we measure the effect on the relaxation of a slight
heating cycle. The effect of the field amplitude is studied; its magnitude is
chosen in order to induce the relaxation of large particles (~7nm), even at
very low temperatures (100mK). Below 1K, the results significantly depart from
a simple thermal dynamics scenario.Comment: 1 tex file, 4 PostScript figure
Aging in the Relaxor Ferroelectric PMN/PT
The relaxor ferroelectric
(PbMnNbO)(PbTiO), ,
(PMN/PT(90/10)) is found to exhibit several regimes of complicated aging
behavior. Just below the susceptibility peak there is a regime exhibiting
rejuvenation but little memory. At lower temperature, there is a regime with
mainly cumulative aging, expected for simple domain-growth. At still lower
temperature, there is a regime with both rejuvenation and memory, reminiscent
of spin glasses. PMN/PT (88/12) is also found to exhibit some of these aging
regimes. This qualitative aging behavior is reminiscent of that seen in
reentrant ferromagnets, which exhibit a crossover from a domain-growth
ferromagnetic regime into a reentrant spin glass regime at lower temperatures.
These striking parallels suggest a picture of competition in PMN/PT (90/10)
between ferroelectric correlations formed in the domain-growth regime with
glassy correlations formed in the spin glass regime. PMN/PT (90/10) is also
found to exhibit frequency-aging time scaling of the time-dependent part of the
out-of-phase susceptibility for temperatures 260 K and below. The stability of
aging effects to thermal cycles and field perturbations is also reported.Comment: 8 pages RevTeX4, 11 figures; submitted to Phys. Rev.
Successful invaders are better defended: The example of Gracilaria vermiculophylla
To evaluate the importance of anti-herbivore resistance for algal invasion success we compared resistance traits among specimens of the red macroalga Gracilaria vermiculophylla from six native populations in Korea and China and eight invasive populations in Europe and Mexico that were maintained under identical conditions in the laboratory. Herbivorous snails both from the native range (Littorina brevicula) and from the invaded range (Littorina littorea) consumed significantly less of seaweed specimens originating from non-native populations. Metabolome profiling revealed that this preference was correlated with an increased woundactivated production of deterring prostaglandins and hydroxyeicosatetraenoic acids. Thus, invasive
populations of G. vermiculophylla are more strongly defended against challenge by herbivores and other biological enemies that cause local tissue or cell disruption and activate oxylipin production.
Anthropogenic distribution of genotypes adapted to resist elevated feeding pressure probably contributed to the invasion success of this species
The relative influences of disorder and of frustration on the glassy dynamics in magnetic systems
The magnetisation relaxations of three different types of geometrically
frustrated magnetic systems have been studied with the same experimental
procedures as previously used in spin glasses. The materials investigated are
YMoO (pyrochlore system), SrCrGaO (piled
pairs of Kagom\'e layers) and (HO)Fe(SO)(OH) (jarosite
compound). Despite a very small amount of disorder, all the samples exhibit
many characteristic features of spin glass dynamics below a freezing
temperature , much smaller than their Curie-Weiss temperature .
The ageing properties of their thermoremanent magnetization can be well
accounted for by the same scaling law as in spin glasses, and the values of the
scaling exponents are very close. The effects of temperature variations during
ageing have been specifically investigated. In the pyrochlore and the
bi-Kagom\'e compounds, a decrease of temperature after some waiting period at a
certain temperature re-initializes ageing and the evolution at the new
temperature is the same as if the system were just quenched from above .
However, as the temperature is raised back to , the sample recovers the
state it had previously reached at that temperature. These features are known
in spin glasses as rejuvenation and memory effects. They are clear signatures
of the spin glass dynamics. In the Kagom\'e compound, there is also some
rejuvenation and memory, but much larger temperature changes are needed to
observe the effects. In that sense, the behaviour of this compound is
quantitatively different from that of spin glasses.Comment: latex VersionCorrigee4.tex, 4 files, 3 figures, 5 pages (Proceedings
of the International Conference on Highly Frustrated Magnetism (HFM2003),
August 26-30, 2003, Institut Laue Langevin (ILL), Grenoble, France
- …
