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Abstract

   We discuss here the nature of the low temperature magnetic relaxation in samples of magnetic nanoparticles. In
addition to usual magnetic viscosity measurement, we have used the Residual Memory Ratio (RMR) method. This
procedure enables us to overcome the uncertainties usually associated with the energy barrier distribution, thus
giving a more detailed insight on the nature of the observed dynamics. A custom made apparatus coupling
dilution refrigeration and SQUID magnetometry allowed measurements of very diluted samples at temperatures
ranging between 60mK and 7K. Two types of particles have been studied: γ-Fe2O3 of moderate anisotropy, and
CoFe2O4 of higher anisotropy where quantum effects are more likely to occur. In both cases, the data cannot
simply be interpreted in terms of mere thermally activated dynamics of independent particles. The deviation from
thermal activation seems to go opposite of what is expected from the possible effect of particle interactions. We
therefore believe that it suggests the occurrence of quantum dynamics at very low temperatures.

Keywords: Magnetic nanoparticles; Quantum tunneling; Magnetic relaxation; Superparamagnetism;

PACS. 75.45.+J Macroscopic quantum phenomena in magnetic systems - 75.50.Tt Fine-particle systems - 75.60.Lr
Magnetic aftereffects

                                                                
* Corresponding author. Tel.: 1-858-534-0852; fax: 1-858-534-0173.

E-mail address: sappey@physics.ucsd.edu

1.  Introduction

   Magnetic nanoparticles, and more generally
granular media, have long been investigated for
both their original physical properties and their
high potential for applications, as in
magnetoresistive sensors and magnetic
recording media. Compared to the parent bulk
materials, thin-films structures possess
interesting properties related to their small
thickness. Magnetic nanowires and

nanoparticles, in which respectively two or
three dimensions are in the nanometer range,
tend to behave even more distinctly from the
bulk. In the case of magnetic nanoparticles, an
important consequence of the size reduction is
the absence of domain walls: the exchange
length becomes greater than the diameter of
the particle, thus favoring a monodomain
configuration. An important consequence for
applications is the related increase in the
coercive field.  Another exciting effect of the
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mesoscopic scale is the prediction of Quantum
Tunneling of the Magnetization (QTM) [1,2,3].
This would be after the Josephson effect in the
superconductors, another manifestation of
quantum mechanics at a quasi-macroscopic
scale, since the magnetic moment involved,
sum of thousands of individual spins, could
tunnel across the anisotropy energy barrier.
Such behavior has been observed for a single
barium ferrite nanoparticle by using micro-
SQUIDs [4]. In most other studies, the samples
are constituted of a huge number of magnetic
nanoparticles. This largely complicates the data
analysis: whether they are prepared by
chemical synthesis, as those studied in the
present work, or by physical methods, they
inevitably present a significant size distribution,
as well as some differences in their shape,
surfaces or defects. Altogether, this leads to an
averaging of most of their properties. In the
case of the characterization of QTM, this
distribution has been proven [5] to be a major
obstacle for the characterization of QTM.
Indeed, the most common experimental
investigations rely on magnetic relaxation
measurements, in which the so-called magnetic
viscosity is the direct product of two a priori
unknown quantities: the effective temperature
(reflecting the nature of the dynamics) and the
energy barrier distribution. One measurement is
thus not enough, which is why we introduced a
more complete relaxation measurement
method, the “Residual Memory Ratio” (RMR)
procedure [6].   In the second section of this
article, we remind the reader of the principle of
this method, and we show some numerical
checks of its advantages on the standard
viscosity measurements. The third section is a
description of the samples on which we have
made our measurements, while the fourth
section presents the corresponding viscosity
and RMR data. The fifth and last section will
be devoted to the discussion of this data.

2. Principle and advantages of the
Residual Memory Ratio (RMR) method

2.1. Limitations of the standard viscosity
measurements

We consider an assembly of non-interacting
magnetic nanoparticles, cooled down in a field
to a temperature T.  At an initial time t=0s, we
zero the magnetic field, and measure the
subsequent change in the magnetic moment as
time goes by. Such relaxation measurements
are shown in Fig.1. An important thing to note
is that, in first approximation, the curves can be
considered linear on a logarithmic scale of time,
which we will discuss below.
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Fig.1. Example of relaxation curves as measured on one of
our samples (γ-Fe2O3 nanoparticles) after switching off a
60 Oe magnetic field.

Let P(U) be the distribution of energy barriers,
and ∆m(U) the variation of the average
magnetic moment of all the particles having
energy barrier U under the final magnetic field.
We will use a generalized Néel-Brown
expression of the relaxation time over a barrier
U, by introducing an effective temperature
T*(T). For thermally activated dynamics, T* is
simply equal to T. For QTM, T* becomes
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independent of T below a cross-over
temperature [1].
 We will assume that the relaxation time for an
energy barrier U is given by a Néel-Brown
expression:
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 in which τ0 is a microscopic attempt time, of
the order of 10-10s.

 A simple integral form then gives the magnetic
moment of the sample as a function of time:
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where the term in brackets represents the
probability of reversal after the time t spent at
the temperature T. Using the usual step
function approximation [7] for the exponential
term, one gets:
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where Uc can be understood as the typical
barrier energy relaxing after a time t. This
expression stresses the little influence of the
time in the relaxation processes: for t varying
from 1s to 1000s and τ0=10-10 s, ln(t/τ0) only
varies from 23 to 30, approximately. This
means that at a given temperature, even by
waiting several decades in time, the explored
energy barrier range is very limited. On the
contrary, varying the temperature is very
efficient way to scan different energy of
barriers.
 By differentiating the former expression, one
gets the magnetic viscosity:
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At this stage, it may seem suitable to normalize
S(T) by some quantity. This has often been
done by dividing S(T) by the field-cooled

magnetization, because this quantity is the total
amount of magnetization that is released during
the whole relaxation process. However, it is
clear from the above equation that, in order to
obtain the quantity T*(T) of interest, S(T)
should indeed be normalized to P(Uc) ∆m (Uc).
The RMR method (see below) is a practical
way to solve this problem, hence we do not
consider here any normalization for S(T).
 More importantly, this expression shows why
the curves of Fig.1 are nearly linear in log(t):
since Uc is a very slowly varying function of
time, S is roughly constant on a few decades of
time as long as P(U)∆m(U) does not have
brutal variations.

 Another important thing to note is that S(T) is
proportional not only to T*(T) (representing the
nature of the dynamics), but also to the
distribution of energy barriers P(U)∆m(U). To
be able to distinguish between thermal and
quantum dynamics on the basis of S(T)
measurements only, it would be necessary to
know P(U)∆m(U).

 QTM dynamics is expected to be important in
the low temperature region, where it must be
disentangled from thermal processes affecting
very small barriers. In low-field experiments,
the small barriers correspond to the small size
part of the particle distribution (~1-2nm), which
is out of reach in electron microscopy
measurements. In higher field experiments, the
relaxation of larger particles (whose number is
more accurately determined) can be brought in
the time window of low-temperature
measurements, but this case is complicated by
the influence of the distribution in the angles
between the easy-axes of the particles and the
field [5], which impedes a simple correlation
between the sizes and the barrier. In both
cases, the anisotropy energies, most probably
size-dependent, have to be known as well to be
able to estimate the energy barriers.

This constitutes a severe limit to the
interpretation of viscosity measurements.
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Fig.2. Illustration of the strong influence of the variations
of P(U)∆m(U) on the dependence of the viscosity S on
the temperature for thermally activated processes.

Fig.2 sketches the extreme variation that one
gets in S(T) when P(U)∆m(U) is changed from
1/U3 to U. It is clear that the shape of S(T) is
then varying considerably, hence its poor ability
to selectively probe the nature of the observed
dynamics:   a leveling-off at low temperatures
of S(T), very often attributed to QTM
dynamics, is not necessarily related to a cross-
over to a QTM regime. It can as well be due to
a local 1/U variation of P(U)∆m(U)  at low
energy barrier.
 Moreover, such variations are likely to occur:
under an applied field, the distribution in
switching fields typically yields this kind of very
numerous low barriers [5], because of the usual
distribution in the orientation of the anisotropy
axes of the particles. Finally, let us note that it
has also been shown that some magnetic oxide
single nanoparticles can exhibit energy barrier
distributions P(U) having 1/U variations
because of the presence of surface spins
disorder [8].
 This is the reason why we developed a
modified relaxation procedure, that allows us to
overcome this difficulty, essentially by
eliminating the sensitivity to P(U) )∆m(U).

2.2. The Residual Memory Ratio (RMR)

As we showed in a previous work [6], one can
overcome this problem by using a modified
viscosity procedure, which enables to eliminate
P(U)∆m(U). The basic idea is that if the
relaxation process is QTM, then the relaxation
should not be sensitive to slight temperature
variations. On the contrary, if the dynamics
were thermally activated, one would expect
that even a slight rise in temperature would
greatly accelerate the relaxation, therefore
altering the shape of the moment-versus-time
curves: the relaxation rate will indeed be
reduced after the pulse, as the relaxing
particles have been rapidly brought closer to
equilibrium. Our procedure is simply a way to
quantify this, by doing a positive temperature
pulse during the relaxation, and measuring the
logarithmic slope at a certain time after the
field change. We then form the ratio of this
slope to the one measured without a
temperature pulse, which is nothing else than
the usual magnetic viscosity. We called it
“Residual Memory Ratio” (RMR) because it
sort of characterizes the memory of the state
acquired under the initial magnetic field that
remains after the temperature pulse has been
applied.
 An actual implementation of this procedure at
3K is reproduced in

Fig.3. In this example, the sample has been
cooled in a field down to 3K.
 The magnetic field has been set to zero at an
initial time, and the sample magnetic moment is
then measured. The first part of the plot (up to
log(t)=2.5) is an isothermal relaxation, the same
as for any viscosity measurement. After 500s,
and for about 200s, the temperature is rapidly
increased to 3.9K, and then lowered back to
3K for the rest of the relaxation. The dashed
line simply reproduces the reference
measurement, without a temperature pulse
(standard magnetic viscosity).
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Fig.3 Illustration of the RMR method. Temperature and
magnetic moment variations measured during an actual
RMR procedure at 3K (dashed line: expectation for
QTM).

One sees that, in this example, the temperature
pulse has a very strong effect on the relaxation:
the magnetic moment brutally decreases during
the pulse, and then stays constant after the
system is cooled down back to 3K. This
behavior is characteristic of thermally activated
dynamics, which translates to the fact that the
ratio of the slope after the temperature pulse to
the slope before is close to zero for a 30%
change in temperature (x=1.3).
 In the RMR procedure, the magnetic moment
after the pulse depends on the time t, the
temperature T0, and the pulse height x, in the
following manner:
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where t0 is the duration of the temperature
pulse, assumed perfectly square in this writing.

We define the RMR by:
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the logarithmic slope measured after a heating
pulse at x.T0 and S(T0) the usual magnetic
viscosity.  Here, the use of a step
approximation, gives a simple hint on the effect
of the procedure:
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  and we recognize here the product of the
usual viscosity by a damping term, related to
the relaxation that occurred during the time t0
spent at the temperature T0. In this formula, it
is clear that this damping term, which
approximates RMR, is both extremely sensitive
to T*(T) and totally insensitive to P(U).∆m(U)
 To be more quantitative, we performed some
numerical evaluations of this quantity, by
computing the previous expression of M(t,T0,x),
then calculating the logarithmic slopes at a
given time, usually 1000s after the field change,
and normalizing them by the slopes measured
without a pulse to obtain RMR(x). We show
the results of such calculations in Fig. 4, where
two scenarii, thermal activation and QTM, have
been considered. The case (i) correspond to
the thermal activation scenario, for which
T*(T)=T. Three calculated RMR curves are
plotted, corresponding to three very different
choices of P(U)∆m(U): 1/U5, U and U5

. It is
obvious that the resulting variations in RMR are
extremely small compared to the variations of
S(T)  showed in Fig.2. The corresponding
RMR curves are indeed almost superimposed,
thus emphasizing the main point of using this
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procedure: step out of the unknown energy
barrier distribution problem.
 Let us now examine the quantum case (ii),
where T*(T) becomes constant below a cross-
over temperature of 1K, and a measurement
temperature T0=0.5K is chosen.
The RMR is flat equal to 1 up to x=2. This is
simply because the temperature pulse does not
exceed the crossover temperature, and the
relaxation rate is therefore not affected at all.
At x=2, the temperature pulse begins to tackle
the region of the crossover, and the residual
relaxation rate after the pulse rapidly drops
with the pulse height. That is why the
calculated RMR shows this steep decrease
after x=2. Moreover, the RMR is, as in case
(i), quasi-insensitive to the three extreme
variations of P(U)∆m(U) we considered.  This
shows that while RMR is very decoupled from
P(U)∆m(U), it allows a clear distinction
between QTM and thermal activation.
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 Fig. 4. Calculated RMR(x) for (i) thermally activated
dynamics and (ii) quantum dynamics (in the plateau
hypothesis with an arbitrary choice of Tcr=1K and
T0=0.5K). The corresponding effective temperatures are
plotted in the insert. Three choices of P(U)∆m(U) are
represented.

We also performed numerous estimates of the
sensitivity of RMR to some potentially not very
well known quantities, such as the prefactor in
the Néel-Brown expression of the relaxation
time. The attempt time τ0 is a slowly varying

function of the temperature, and we have
checked the effect of such variations on the
RMR.
 In Fig. 5, we show how RMR weakly depends
on the value of τ0, since the curves, in both
thermal activation (i) and QTM (ii) case, show
little variation for τ0 values ranging from 10-12

to 10-8 seconds. This shows that our procedure
essentially probes the exponential term in the
relaxation time, and is not very sensitive to the
value of the attempt time.
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Fig. 5. Variation of the calculated RMR in the thermal (i)
and quantum (ii) cases for various very different values of
the attempt time τ0.   

  Another point that we wish to emphasize is
the weak sensitivity of RMR to a departure
from a Néel-Brown expression of the
relaxation time for the activated dynamics.
Some experimental results obtained on isolated
monodomain magnetic nanoparticles showed a
departure from this expression:  the non-
switching probability was fitted by exp[(-
t/ τ)β], with β equals 1 for the Néel-Brown
expression [9, 10].  The reported values of
β are ranging from 0.3 to 7.
 Fig. 6 shows the computed RMR for a few
values of β, after the corresponding
modification of the previous expression of
m(t,T0,x).
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Fig. 6. Variation of the calculated RMR for various values
of the parameter β.

One can see that the overall effect is small. In
the case of β<1 (stretched exponential), the fall
of RMR is smoother but RMR is already
almost zero at x=1.6 in the extreme case
β=0.3.  Moreover, the physical reason usually
invoked to explain this stretched exponential
behavior is precisely the existence of a multi-
valley energy landscape, for instance related to
complex surface spin configurations. Actually,
the RMR method already accounts for a
barrier distribution, whatever its origin, and it
does not seem clear to us that the use of β≠1 is
justified in our calculations.
On the other hands, in the case β>1, the RMR
falls off even faster than in the Néel-Brown
case, and the contrast with a QTM-case RMR
will not be affected.
  After this review of the principle and virtues
of the Residual Memory Ratio procedure, we
will present some actual data acquired on two
samples: one of moderate anisotropy
(maghemite, γ-Fe2O3), and the other of high
anisotropy (cobalt ferrite, CoFe2O4) magnetic
nanoparticles.

3. Presentation of the samples

3.1. Maghemite (γ-Fe2O3)

The maghemite nanoparticles were chemically
synthesized by following the protocol developed

by R. Massart [11] to prepare ferrofluids by
coprecipitation. The sizes can be varied
between 3 and 20 nm by tuning the
temperature, the pH of the solution, or the
proportions of the reactants. For typical
diameters below 15 nm, the electrostatic
repulsion linked to the surface charge avoids
the aggregation of the particles that would
result from the magnetic and Van der Waals
interactions. The γ-Fe2O3 particles were then
embedded in a silica matrix by a room
temperature polymerization process [12]. The
X-ray diffraction patterns, as well as high-
resolution TEM and Mössbauer spectroscopy
confirmed that the particles were γ-Fe2O3. The
size distribution, determined after counting a
sample of 440 particles on TEM micrographs,
follows a lognormal law:

( )
   

2
ln(d/d

-exp
2

1
 (d) 2

2
0 








=

dd d
f

σσπ

with a peak diameter d0=7nm and a standard
deviation dσ =0.25.
The samples that we studied were extremely
diluted (as low as 0.02% volume fraction), in
order to minimize the interparticle interactions.
 Fig. 7 shows the zero-field cooled (ZFC) and
field-cooled (FC) magnetic moments measured
in 20Oe on a 0.021% volume fraction sample.
We actually checked for a variety of
concentrations, including all those mentioned in
this article, that the FC and ZFC magnetization
curves were very well superimposed when
normalized to the volume fractions of magnetic
nanoparticles. This clearly shows that magnetic
interactions are indeed negligible.
Besides, magnetic hysteresis measurements at
1.9K yield an estimate of the anisotropy energy
density K~2.105 erg/cm3, which is believed to
allow a cross-over to a QTM regime below a
few tenth of a Kelvin.
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Fig. 7. Example of zero-field cooled (ZFC) and field-
cooled (FC) magnetic moments measured for the
maghemite sample (0.021% volume fraction).

3.2 Cobalt ferrite (CoFe2O4)

The Cobalt ferrite nanoparticles were prepared
and characterized in a similar manner as the
maghemite, by chemical coprecipitation. Their
size distribution can be approximated by a
lognormal law, with d0=5.3 nm and dσ =0.2.
The magnetic measurements were performed
using 70µl of aqueous solution in an hermetic
small plastic container.
We show on Fig. 8 the ZFC-FC moments for a
0.012% sample, as well as one for the 2.3%
sample of which we will present the relaxation
data in section 4. One sees that there is a clear
difference in shape, likely to be due to the non-
negligible magnetic dipolar interactions in this
more concentrated sample.
 Finally, magnetic hysteresis measurements
lead to K~4.106 erg/cm3, which roughly
translate to a cross-over temperature of a few
Kelvin, much higher than for the maghemite.
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Fig. 8: ZFC and FC for two concentrations of CoFe2O4

particles. The 2.3% curve is rescaled  for clarity.

4. Relaxation experiments: viscosity and
RMR

4.1. Maghemite samples

4.1.1 Standard viscosity measurements
We first measured the relaxation properties by
using the usual viscosity procedure, in two
variants. The first one, that we will call “low-
field”, is the following: the samples are cooled
in a field of 60Oe, then the field is immediately
switched to 0Oe and the magnetic moment is
measured as a function of time. For γ-Fe2O3,
we also used a second procedure, that we will
refer to as “high-field”, in which we prepare
the samples by applying a –2000Oe field,
strong enough to overcome all the energy
barriers and put the magnetic moments of the
particles to relax in the same hemisphere. We
then sweep this field to some value H1,
between -100Oe and +1500Oe. Some particles
relax during this step, and we wait 1 hour,
mainly for damping the flux drift in the
superconducting magnet. We then increase
rapidly the field from H1 to H2=H1+46Oe by
using a copper coil, to trigger the relaxation
processes that we want to analyze. The main
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interest in using the “high-field” procedure is to
reduce the energy barriers with the field, thus
enabling us permitting to measure bigger
particles. From estimates based on the value of
the anisotropy energy density and the use of
the Stoner-Wohlfarth model [13], the typical
size of the particles that we see relaxing at 1
Kelvin would be 2nm with the “low-field”
procedure. Under a magnetic field, it is possible
to bring larger particles in the measurement
window, and increasing the field allows us to
scan an effective energy barrier distribution,
which peaks for a certain value of the magnetic
field. At the corresponding peak in the
viscosity, the typical size of the relaxing particle
is estimated to be around 9 nm, which is
actually a little higher than the typical diameter
7nm.
 Fig.9 shows the temperature dependence of
the magnetic viscosity measured using the
“low-field” procedure. Below 150mK , S(T)
presents a striking upturn. It may be due to the
presence of numerous small energy barriers, or
to a quantum nature of the dynamics, or most
likely to a combination of both as in a simple
scenario of QTM one would not expect S(T) to
increase back towards low temperatures.
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Fig.9. Magnetic viscosity as a function of the temperature
for the maghemite sample after switching of a 60 Oe
magnetic field (“low-field” procedure). The insert shows a
detail of the upturn  at very low temperature.

We then measured viscosity data using the
“high-field” procedure,  as shown on Fig.10.
We also had to use a slightly less diluted
sample (volume fraction 0.33%) to dominate a
random background signal due to flux drifts in
the superconducting magnet coupling to the
SQUID pick-up coils.
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 Fig.10. Magnetic viscosity as a function of the final
magnetic field  for the maghemite sample at various
temperatures. The dashed lines are guides for the eye.

All the measured curves S(H) show a
maximum, related to the modulation of the
energy barrier distribution by the magnetic field,
which allows to scan the size distribution of the
particles. The peak shifts towards higher fields
as the temperature is lowered. At 100mK, we
reach a different regime, and the curve peaks
at a lower field. We found that this was due to
some avalanches: the Zeeman energy released
during the relaxation is enough to heat up the
sample, thus generating more relaxation and
even more heat. Careful measurements
allowed us to ensure the reproducibility of such
processes and we verified that, after waiting
for one hour after the avalanche at 100mK, we
were achieving a reproducible initial state
before applying the 46Oe field variation and
measuring the relaxation.

4.1.2. Residual Memory Ratio measurements
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To be able to probe the nature of the dynamics,
we then used the RMR method that has been
discussed in Section 2. Fig. 11 shows the RMR
data for the 0.041% volume fraction
maghemite sample measured by using the
“low-field” procedure.
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Fig. 11. Measured RMR for a maghemite sample (0.041%
volume fraction) using the “low-field” procedure. The
solid line is the RMR predicted for thermally activated
dynamics. The dashed lines are guides for the eye.

The RMR data at 3K and 2K fall very close to what
is expected in the case of thermally activated
dynamics. At lower temperatures, a clear departure
from the thermal dynamics prediction is observed.
These deviations are increasing with decreasing
temperatures.

  Fig. 12 shows the RMR measured using the
“high-field” procedure for the 0.33%
maghemite sample. The chosen values of the
final field are close to those of the peaks in the
viscosity curves of Fig.10. Then again the
RMR at 3K is very close to the thermal
prediction, but clearly departs from it when the
temperature is lowered, in a very similar
manner as for the “low-field” measurements.
This is important to note, as we expect to probe
very different sizes by using those two
procedures: about 2nm diameter at 1K for the
“low-field”, and about 9nm for the “high-field”,
which means a factor roughly five in the

surface to volume ratios. This is a hint that
those deviations are intrinsic to the nature of
our particles, and probably not driven by their
surface properties. Moreover, these deviations
are fairly smooth compared to the RMR
plateau of the QTM scenario curve of Fig. 4.
In our opinion, this suggests a broad distribution
of cross-over temperature, due for instance to
a distribution in the anisotropy energy densities
of the maghemite nanoparticles.
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Fig. 12 RMR measured using the “high-field” procedure
for a maghemite sample (0.33% volume fraction). The
dashed lines are guides for the eye.

4.2 Cobalt ferrite samples

4.1.2. Standard viscosity measurements
 We measured the magnetic viscosity by using
the “low-field” procedure previously
introduced. Due to the lower relaxation signal
(probably related to the high coercivity of those
particles) we had to use a more concentrated
sample, having 2.4% volume fraction of
magnetic material. We also had to increase the
fields for the “high-field” procedure, which
yielded much higher flux drifts in the
superconducting magnet, and prevented us
from getting reproducible results. We will
therefore present only the data obtained by
using the “low-field” procedure.  Fig. 13 shows
the measured magnetic viscosity. It does not
show the upturn we observed for the
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maghemite sample, but the viscosity does not
extrapolate to zero at low temperatures. Once
again, this may mean either that the system
crosses over to QTM like dynamics, or simply
that many low energy barriers are present, in
the form of small particles, surface spin
configurations, etc. Applying the same logic as
above, we then measured the RMR data to
selectively sense the nature of the dynamics.

4.2.2. Residual Memory Ratio measurements
 Our RMR data on the cobalt ferrite sample is
reported on Fig. 14. Looking at the low
temperature, we actually observe at 60mK and
100mK what we expect for QTM like
dynamics: RMR stays flat equal to 1, even for
temperature pulses as high as four or five times
the initial temperature. At higher temperatures,
RMR starts to fall off very rapidly initially, in a
thermally activated fashion. But we observe
here an effect that was not present in the
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 Fig. 13. Magnetic viscosity as a function of the
temperature for the cobalt ferrite  sample (2.4% volume
fraction). The “low-field” procedure has been used.

maghemite samples: after this initial fast drop,
the RMR does not fall to zero as we would
expect from our simple model. On the contrary,
it flattens off at about 0.2. We observed this
effect up to relatively high temperature (over
10K), using a commercial SQUID
magnetometer.  As is shown on the graph,
things eventually come back to normal at higher

temperatures: the 100K curve is very close to
the prediction for thermal activation.
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Fig. 14.  RMR results on the cobalt ferrite sample (2.4%
volume fraction). The  “low-field” procedure was used.
The dashed lines are guides for the eye.

5. Discussion

 The present data is obviously not compatible
with the simplest case of independent thermally
activated relaxation processes. Much more
than the viscosity results, it is the RMR data
that legitimates this first simple statement.
 We indeed observe two different kinds of
strong deviations from this simplest case, for
two different samples of very different
anisotropy energy densities and concentrations.
The cobalt ferrite sample shows a striking
QTM-like plateau in its RMR below 150mK,
but it is also a more concentrated sample, for
which dipolar interactions are certainly not
negligible anymore. On the other hand, it seems
very difficult to attribute such deviations to the
effect of magnetic interactions. In most
interaction models (e.g. Dormann et al. [14]),
the individual energy barrier of one given
particle is enhanced by the dipolar interactions
with neighboring particles, thus leading to some
kind of collective freezing and to an increase in
its energy barrier as the temperature is
lowered.  In spin-glasses, for example, the
barriers are known to increase as the
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temperature is lowered [15], and one would
therefore expect to see the opposite deviation
on RMR: during the temperature pulse, the
barriers will be lowered and accordingly easier
to overcome than if in the non-interacting case.
The expected RMR would therefore fall faster
then the curves we show for thermal activation,
which is the opposite of what we observe.
 We actually did measure RMR data on a spin-
glass sample CdCr1.7In0.3S4 at 12K, i.e. below
its freezing temperature of 16.7K. The results,
presented in Fig. 15, show that the RMR is
indeed falling faster than for the “no-
interactions” thermal activation prediction
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Fig. 15. Measurement of RMR for a CdCr1.7In0.3S4 spin-
glass sample at 12K. The deviations from the non-
interacting thermal activation case are opposite to those
we observe for the nanoparticles. The dashed lines are
guides for the eye.

 The RMR data we measured on the cobalt
ferrite yields another issue. The RMR
procedure assumes that the energy barrier
distribution P(U)∆m(U) is temperature
independent. In the cobalt ferrite sample, we do
not understand why RMR levels-off at 0.2, up
to relatively high values of x, in spite of a sharp
“thermal activation” like initial decrease as
seen in Fig. 14 at temperatures above 3K. One
reason we may think of is that at very small
values of x, we probe the dynamics in a “non-
destructive” way, where the physical properties

of the particles are not changing much and
P(U)∆m(U) is really independent of the
temperature. On the contrary, at larger values
of x, P(U)∆m(U) may start to be affected,
because some physical properties are:  the
effective anisotropy energy density, or the
magnetization, of the nanoparticles may vary
due their small size and/or defects, since this is
of course not expected in the bulk materials.  It
is then conceivable that the barriers should
increase during the temperature pulse, thus
preventing the RMR from dropping to zero as it
should. We can therefore check our
conclusions by only considering the data at
small x. Following this idea, we analyzed the
data by considering the initial angle (both RMR
and x being dimensionless) of the curves with
the horizontal. As shown in Fig. 16, a pure
QTM behavior would then correspond to a zero
degree angle, whereas the thermally activated
dynamics would show up as an angle of
roughly –80 degrees.
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Fig. 16. Principle of the “Initial-angle” analysis for the
RMR data

Using such a method, we can summarize the
present data in Fig. 17, which clearly supports a
crossover from thermally activated to QTM
dynamics for both the maghemite and the
cobalt ferrite. Interestingly enough, the
behavior is not noticeably different between the
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“low-field” and “high-field” procedures for the
maghemite sample, in spite of the very different
sizes of particles that we have in the
measurement window (respectively 2nm and
9nm), which suggests an intrinsic origin to this
quantum behavior.  Last but not least, for the
cobalt ferrite, this crossover happens at a much
higher temperature than for the maghemite,
which is in agreement with the much higher
anisotropy energy density of the cobalt ferrite
nanoparticles.
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Fig. 17.  Summary of the RMR data analyzed using the
initial- angle analysis.

6. Conclusion

   We have recalled how magnetic viscosity
measurements are by essence mixing the
nature of the dynamics with the distribution of
energy barriers.  We have developed and used
as a complement the “Residual Memory Ratio”
(RMR) method. This relaxation procedure
enables us to eliminate the sensitivity to the
energy barrier distribution, thus providing a
reliable insight on the nature of the observed
dynamics. By using a custom made apparatus
coupling dilution refrigeration and SQUID
magnetometry, we have performed
measurements of very diluted samples at
temperatures as low as 60mK. Two types of
particles have been studied: γ-Fe2O3 of

moderate anisotropy, and CoFe2O4 of higher
anisotropy where quantum effects are likely to
occur at higher temperatures. In both cases,
the data showed a clear departure from the
predictions for RMR in thermal activation
regime.
 For the cobalt ferrite, a QTM-like plateau is
even reached in the RMR below 150mK, but at
higher temperatures we do not fully understand
the RMR for high values of x. The situation is
probably more complicated than for the
maghemite, as the higher volume fraction we
used yields non-negligible magnetic dipolar
interactions. Nevertheless, these deviations go
the opposite way of what is expected from the
effect of particles magnetic interactions, thus
giving us confidence that the low temperature
and low x data is still very supportive of QTM.
 In the case of the maghemite, the situation is
even clearer because of the RMR does behave
as expected in a thermal way at high
temperatures and high x, and clearly deviates
from the prediction for thermally activated
dynamics at 100mK and below. Moreover, the
same behavior is observed in the “high-field”
and “low-field” procedures, thus showing an
intrinsic origin to this behavior, and pointing to a
smooth crossover to a QTM regime at very
low temperatures.
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