343 research outputs found

    Dissecting the two mechanisms of scramble competition among the Virunga mountain gorillas

    Get PDF
    Two mechanisms have been proposed to explain why scramble competition can increase the travel requirements of individuals within larger groups. Firstly, individuals in larger groups may be more likely to encounter food sites where other group members have already eaten, leading to greater asynchronous “individual” travel to find fresh sites. Secondly, when food sites are aggregated into patches, larger groups may need to visit more patches to obtain the same amount of food per capita, leading to greater synchronous “group” travel between patches. If the first mechanism can be mitigated by increasing group spread, then we expect the second mechanism to be more sensitive to group size. Here, we examine the individual travel and group travel of the Virunga mountain gorillas, along with potential implications for the two mechanisms of scramble competition. Asynchronous individual travel accounted for 67% of the total travel time, and the remainder arose from group travel. Group spread increased significantly for larger groups, but not enough to prevent an increase in individual travel. Contrary to expectations, group travel decreased with size among most groups, and we found only limited evidence of patch depletion that would cause the second mechanism of scramble competition. Collectively, our results illustrate how the influence of group size can differ for individual travel versus group travel, just as it differs among species for overall travel. Studies that distinguish between the two mechanisms of scramble competition may enhance our understanding of ecological constraints upon group size, including potential differences between frugivores and folivores

    Effect of mountain gorilla (Gorilla beringei beringei) population growth to their key food plant biomass in Volcanoes National Park, Rwanda

    Get PDF
    High densities of large herbivores can have detrimental effects on plant biomass. Understanding the relationship between animal densities and plant distribution and abundance is essential for the conservation of endangered species and ecosystems. Mountain gorilla censuses conducted for different periods in the last three decades have revealed a steady increase of gorilla population in Virunga Massif whereby the recent number of gorillas has doubled compared to their number in the 1980s. It is unclear whether the continuous population growth of the herbivorous Virunga gorilla within an isolated forest ‘island’ has been affecting gorilla food plant biomass. This study investigated the effect of varying mountain gorilla densities on the biomass of the five key food plant species (Galium spp., Carduus nyassanus, Peucedanum linderi, Rubus spp., Laportea alatipes) that make up >70% of the mountain gorilla diet. We used plant biomass data collected in a central part of the Virunga massif, commonly known as Karisoke sector from 2009 to 2011, and GPS records of gorilla groups ranging in the same area nine months prior biomass assessment. Gorilla densities were estimated using the Kernel Utilization Distribution (KDE) analysis (functions: ‘kernelUD’ and ‘getvolumeUD’) from the Adehabitat package in R software, which provides the probability density of gorilla occurrence at each coordinate (x, y) of the study area. Analyses using GLMs suggest that gorilla densities (a proxy of previous gorilla utilization intensity) did neither affect the total biomass of key food plant species nor the biomass of each key food plant species (p>0.05). These results may indicate that current revisit rates of feeding sites by gorillas allow for complete plant regeneration, and no signs of overharvesting. Alternatively, feeding sites characterized by very high biomass may be preferred by gorillas and remain sites with the highest biomass even after being frequently used by gorillas. Findings also suggest that carrying capacity of the gorilla population in the study areas may not yet be reached if food is the driving constraint. However, monitoring of the relationship between gorilla densities and food plant biomass must continue while the Virunga population continues growing. Future studies also need to incorporate other sympatric large herbivores in the Virungas who share food plants with mountain gorillas.Keywords: habitat use, gorilla density, plants biomas

    Higher maximum temperature increases the frequency of water drinking in Mountain Gorillas (Gorilla beringei beringei)

    Get PDF
    Water plays a vital role in many aspects of sustaining life, including thermoregulation. Given that increasing temperatures and more extreme weather events due to climate change are predicted to influence water availability, understanding how species obtain and use water is critical. This is especially true for endangered species in small isolated populations which are vulnerable to drought and the risk of extinction. We examined the relationship between the frequency of water drinking and maximum temperature and rainfall in 21 groups of wild gorillas from the two mountain gorilla populations (Bwindi and Virunga), between 2010 and 2020. In both populations, we found that the frequency of water drinking significantly increased at higher maximum temperatures than cooler ones, but we found no consistent relationship between water drinking and rainfall. We also found that Virunga gorillas relied more on foods with higher water content than Bwindi gorillas, which in part likely explains why they drink water much less frequently. These findings highlight that even in rainforest mammals that gain most of their water requirements from food, access to free-standing water may be important because it likely facilitates evaporative cooling in response to thermoregulatory stress. These results have important implications for conservation and behavior of mountain gorillas in the face of continued increases in temperature and frequency of extreme weather events associated with climate change

    Longitudinal study on nerve ultrasound and corneal confocal microscopy in NF155 paranodopathy

    Get PDF
    We report the case of a 27-year-old patient with subacute anti-neurofascin-155 neuropathy with bifacial palsy, who showed excellent response to rituximab. We provide longitudinal data of established clinical scores, nerve conduction studies, antibody titers, and novel imaging methods (nerve ultrasonography and corneal confocal microscopy). Clinical and electrophysiological improvement followed the reduction of serum antibody titer and correlated with a reduction of corneal inflammatory cellular infiltrates whereas the increase in the cross-sectional area of the peripheral nerves remained 12 months after first manifestation. Our findings suggest that novel techniques provide useful follow-up parameters in paranodopathies

    A Cardiac MicroRNA Governs Systemic Energy Homeostasis by Regulation of MED13

    Get PDF
    SummaryObesity, type 2 diabetes, and heart failure are associated with aberrant cardiac metabolism. We show that the heart regulates systemic energy homeostasis via MED13, a subunit of the Mediator complex, which controls transcription by thyroid hormone and other nuclear hormone receptors. MED13, in turn, is negatively regulated by a heart-specific microRNA, miR-208a. Cardiac-specific overexpression of MED13 or pharmacologic inhibition of miR-208a in mice confers resistance to high-fat diet-induced obesity and improves systemic insulin sensitivity and glucose tolerance. Conversely, genetic deletion of MED13 specifically in cardiomyocytes enhances obesity in response to high-fat diet and exacerbates metabolic syndrome. The metabolic actions of MED13 result from increased energy expenditure and regulation of numerous genes involved in energy balance in the heart. These findings reveal a role of the heart in systemic metabolic control and point to MED13 and miR-208a as potential therapeutic targets for metabolic disorders.PaperCli

    Deficits in Long-Term Recognition Memory Reveal Dissociated Subtypes in Congenital Prosopagnosia

    Get PDF
    The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception

    Novel insights into the mechanisms mediating the local antihypertrophic effects of cardiac atrial natriuretic peptide: role of cGMP-dependent protein kinase and RGS2

    Get PDF
    Cardiac atrial natriuretic peptide (ANP) locally counteracts cardiac hypertrophy via the guanylyl cyclase-A (GC-A) receptor and cGMP production, but the downstream signalling pathways are unknown. Here, we examined the influence of ANP on β-adrenergic versus Angiotensin II (Ang II)-dependent (Gs vs. Gαq mediated) modulation of Ca2+i-handling in cardiomyocytes and of hypertrophy in intact hearts. L-type Ca2+ currents and Ca2+i transients in adult isolated murine ventricular myocytes were studied by voltage-clamp recordings and fluorescence microscopy. ANP suppressed Ang II-stimulated Ca2+ currents and transients, but had no effect on isoproterenol stimulation. Ang II suppression by ANP was abolished in cardiomyocytes of mice deficient in GC-A, in cyclic GMP-dependent protein kinase I (PKG I) or in the regulator of G protein signalling (RGS) 2, a target of PKG I. Cardiac hypertrophy in response to exogenous Ang II was significantly exacerbated in mice with conditional, cardiomyocyte-restricted GC-A deletion (CM GC-A KO). This was concomitant to increased activation of the Ca2+/calmodulin-dependent prohypertrophic signal transducer CaMKII. In contrast, β-adrenoreceptor-induced hypertrophy was not enhanced in CM GC-A KO mice. Lastly, while the stimulatory effects of Ang II on Ca2+-handling were absent in myocytes of mice deficient in TRPC3/TRPC6, the effects of isoproterenol were unchanged. Our data demonstrate a direct myocardial role for ANP/GC-A/cGMP to antagonize the Ca2+i-dependent hypertrophic growth response to Ang II, but not to β-adrenergic stimulation. The selectivity of this interaction is determined by PKG I and RGS2-dependent modulation of Ang II/AT1 signalling. Furthermore, they strengthen published observations in neonatal cardiomyocytes showing that TRPC3/TRPC6 channels are essential for Ang II, but not for β-adrenergic Ca2+i-stimulation in adult myocytes
    corecore