82 research outputs found

    CO2 saturation and thickness predictions in the Tubåen Fm., Snøhvit field, from analytical solution and time-lapse seismic data

    Get PDF
    CO2 migration in a saline aquifer is governed by viscous, capillary and gravitational fluid forces at an early stage of injection, where the dominant flow regime is site specific and controls the fluid migration in the pore space. This study combines the CO2 saturation inverted from time-lapse seismic methods with an analytical expression to define the CO2 flow regime, saturation distribution and layer thickness in the Tubåen Fm. following CO2 injection. Quantitative estimates of the CO2 saturation from time-lapse seismic amplitude versus offset (AVO) and spectral decomposition are compared to a viscous dominated analytical expression of CO2 injection into a saline aquifer. The spatial extent of the CO2 plume obtained from time-lapse spectral decomposition and inverted from time-lapse AVO analysis display good agreement with the analytical expression. The CO2 is limited to an area close to the injection well, with an elongated shape in the channel direction. Comparison between the time-lapse seismic and analytical expression shows that the fluid flow is dominated by viscous forces. CO2 saturation within the plume is constant and close to the residual brine saturation. The influence of gravity is ignorable on the reservoir CO2 flow. CO2 fills the entire sandstone unit up to approximately 50 m away from the injection before the CO2 layer thickness is reduced to a thin wedge that propagates below the overlying shale unit. Reduction in CO2 saturation away from the injection well is a reduction in effective CO2 saturation relative to the thickness of the horizon. The maximum radius of the CO2 layer from the analytic expression is 750 m, of which 400 m is above the time-lapse noise level. Time-lapse seismic analysis reveals the CO2 layer radius is 405 m in the direction of the local fluvial channel and 273 m in the perpendicular direction

    Engraissement de taurillons de race française frisonne pie noire en Guadeloupe. Utilisation comparée d'aliments à base de son et de céréales

    Get PDF
    En Guadeloupe, 2 groupes de 12 et 9 taurillons frisons ont reçu entre le sevrage et l'abattage à 15 mois de l'herbe hachée (Pangola) en quantité limitée et un aliment concentré ad libitum, soit hautement énergétique (66 p. 100 céréales, 10 p.100 tourteau d'arachide, 21 p. 100 luzerne déshydratée), soit moins énergétique (85 p. 100 son de blé, 10 p. 100 mélasse de canne à sucre, 1,5 p. 100 urée). Les gains moyens journaliers (888 et 854 g) et les consommations journalières d'aliment concentré (6,2 et 6,0 kg) n'ont pas été significativement différentes. Le régime moins énergétique a donc été utilisé plus efficacement. Les consommations et croissances obtenues avec le régime riche en énergie sont inférieures à celles qui ont été enregistrées avec ce même régime sur le même génotype en milieu tempér

    Qualitative and quantitative HIV antibodies and viral reservoir size characterization in vertically infected children with virological suppression

    Get PDF
    Background: Absence of detectable viraemia after treatment cessation in some vertically HIV-infected (VHIV) children suggests that early initiation of HAART could lead to functional cure. Objectives: We described the factors associated with HIV antibody levels and the viral reservoir size in HAART-treated VHIV children. Methods: Study included 97 VHIV children with virological suppression, in Bamako, Mali. The anti-gp41 antibody activities and HIV serostatus were assessed. The viral reservoir size was measured by quantifying total cell-associated HIV DNA. Results: Among the children studied, the median total HIV DNA level was 445 copies/106 cells (IQR = 187–914) and the median anti-gp41 antibody activity was 0.29 OD (IQR = 0.18–0.75). Low activity of anti-gp41 antibodies was associated with a younger age of HAART initiation (P = 0.01). Overall, eight HIV-1 seroreversions were identified. Conclusions: Study identified potential candidates with low viral reservoir and low antibody levels or activities for future trials aiming to reduce HIV-1 reservoir to limit HAART duration

    Norwegian patients and retail chicken meat share cephalosporin-resistant Escherichia coli and IncK/bla<sub>CMY-2</sub> resistance plasmids

    Get PDF
    Objectives In 2012 and 2014 the Norwegian monitoring programme for antimicrobial resistance in the veterinary and food production sectors (NORM-VET) showed that 124 of a total of 406 samples (31%) of Norwegian retail chicken meat were contaminated with extended-spectrum cephalosporin-resistant Escherichia coli. The aim of this study was to compare selected cephalosporin-resistant E. coli from humans and poultry to determine their genetic relatedness based on whole genome sequencing (WGS). Methods Escherichia coli representing three prevalent cephalosporin-resistant multi-locus sequence types (STs) isolated from poultry (n = 17) were selected from the NORM-VET strain collections. All strains carried an IncK plasmid with a blaCMY-2 gene. Clinical E. coli isolates (n = 284) with AmpC-mediated resistance were collected at Norwegian microbiology laboratories from 2010 to 2014. PCR screening showed that 29 of the clinical isolates harboured both IncK and blaCMY-2. All IncK/blaCMY-2-positive isolates were analysed with WGS-based bioinformatics tools. Results Analysis of single nucleotide polymorphisms (SNP) in 2.5 Mbp of shared genome sequences showed close relationship, with fewer than 15 SNP differences between five clinical isolates from urinary tract infections (UTIs) and the ST38 isolates from poultry. Furthermore, all of the 29 clinical isolates harboured IncK/blaCMY-2 plasmid variants highly similar to the IncK/blaCMY-2 plasmid present in the poultry isolates. Conclusions Our results provide support for the hypothesis that clonal transfer of cephalosporin-resistant E. coli from chicken meat to humans may occur, and may cause difficult-to-treat infections. Furthermore, these E. coli can be a source of AmpC-resistance plasmids for opportunistic pathogens in the human microbiota

    Rapid Qualitative Urinary Tract Infection Pathogen Identification by SeptiFast® Real-Time PCR

    Get PDF
    Background Urinary tract infections (UTI) are frequent in outpatients. Fast pathogen identification is mandatory for shortening the time of discomfort and preventing serious complications. Urine culture needs up to 48 hours until pathogen identification. Consequently, the initial antibiotic regimen is empirical. Aim To evaluate the feasibility of qualitative urine pathogen identification by a commercially available real-time PCR blood pathogen test (SeptiFast®) and to compare the results with dipslide and microbiological culture. Design of study Pilot study with prospectively collected urine samples. Setting University hospital. Methods 82 prospectively collected urine samples from 81 patients with suspected UTI were included. Dipslide urine culture was followed by microbiological pathogen identification in dipslide positive samples. In parallel, qualitative DNA based pathogen identification (SeptiFast®) was performed in all samples. Results 61 samples were SeptiFast® positive, whereas 67 samples were dipslide culture positive. The inter-methodological concordance of positive and negative findings in the gram+, gram- and fungi sector was 371/410 (90%), 477/492 (97%) and 238/246 (97%), respectively. Sensitivity and specificity of the SeptiFast® test for the detection of an infection was 0.82 and 0.60, respectively. SeptiFast® pathogen identifications were available at least 43 hours prior to culture results. Conclusion The SeptiFast® platform identified bacterial DNA in urine specimens considerably faster compared to conventional culture. For UTI diagnosis sensitivity and specificity is limited by its present qualitative setup which does not allow pathogen quantification. Future quantitative assays may hold promise for PCR based UTI pathogen identification as a supplementation of conventional culture methods

    Profiles of Multidrug Resistance Protein-1 in the Peripheral Blood Mononuclear Cells of Patients with Refractory Epilepsy

    Get PDF
    BACKGROUND: About one third of patients with epilepsy become refractory to therapy despite receiving adequate medical treatment, possibly from multidrug resistance. P-glycoprotein, encoded by multidrug resistance protein-1 (MDR1) gene, at the blood brain barrier is considered as a major factor mediating drug efflux and contributing to resistance. Given that peripheral blood mononuclear cells (PBMNCs) express MDR1, we investigated a MDR1 status of PBMNCs in various subsets of epilepsy patients and demonstrated their association with clinical characteristics. METHODOLOGY/PRINCIPAL FINDINGS: Clinical and MDR1 data were collected from 140 patients with epilepsy, 30 healthy volunteers, and 20 control patients taking anti-epileptic drugs. PBMNCs were isolated, and basal MDR1 levels and MDR1 conformational change levels were measured by flow cytometry. MDR1 profiles were analyzed according to various clinical parameters, including seizure frequency and number of medications used in epilepsy patients. Epilepsy patients had a higher basal MDR1 level than non-epilepsy groups (p<0.01). Among epilepsy patients, there is a tendency for higher seizure frequency group to have higher basal MDR1 level (p = 0.059). The MDR1 conformational change level was significantly higher in the high-medication-use group than the low-use group (p = 0.028). Basal MDR1 (OR = 1.16 [95% CI: 1.060-1.268]) and conformational change level (OR = 1.11 [95% CI: 1.02-1.20]) were independent predictors for seizure frequency and number of medications, respectively. CONCLUSIONS/SIGNIFICANCE: The MDR1 profile of PBMNCs is associated with seizure frequency and medication conditions in patients with epilepsy

    FTIR Microspectroscopy Coupled with Two-Class Discrimination Segregates Markers Responsible for Inter- and Intra-Category Variance in Exfoliative Cervical Cytology.

    Get PDF
    Infrared (IR) absorbance of cellular biomolecules generates a vibrational spectrum, which can be exploited as a “biochemical fingerprint” of a particular cell type. Biomolecules absorb in the mid-IR (2–20 μm) and Fourier-transform infrared (FTIR) microspectroscopy applied to discriminate different cell types (exfoliative cervical cytology collected into buffered fixative solution) was evaluated. This consisted of cervical cytology free of atypia (i.e. normal; n = 60), specimens categorised as containing low-grade changes (i.e. CIN1 or LSIL; n = 60) and a further cohort designated as high-grade (CIN2/3 or HSIL; n = 60). IR spectral analysis was coupled with principal component analysis (PCA), with or without subsequent linear discriminant analysis (LDA), to determine if normal versus low-grade versus high-grade exfoliative cytology could be segregated. With increasing severity of atypia, decreases in absorbance intensity were observable throughout the 1,500 cm−1 to 1,100 cm−1 spectral region; this included proteins (1,460 cm−1), glycoproteins (1,380 cm−1), amide III (1,260 cm−1), asymmetric (νas) PO2 − (1,225 cm−1) and carbohydrates (1,155 cm−1). In contrast, symmetric (νs) PO2 − (1,080 cm−1) appeared to have an elevated intensity in high-grade cytology. Inter-category variance was associated with protein and DNA conformational changes whereas glycogen status strongly influenced intra-category. Multivariate data reduction of IR spectra using PCA with LDA maximises inter-category variance whilst reducing the influence of intra-class variation towards an objective approach to class cervical cytology based on a biochemical profile
    corecore