504 research outputs found
Global Identification of Drive Gains and Dynamic Parameters of Parallel Robots - Part 2: Case Study
International audienceUsually, identification models of parallel robots are simplified and take only the dynamics of the moving platform into account. Moreover the input efforts are estimated through the use of the manfucaturer's actuator drive gains that are not calibrated thus leading to identification errors. In this paper a systematic way to derive the full dynamic identification model of the Orthoglide parallel robot in combination with a method that allows the identification of both robot inertial parameters and drive gains
Counteranion and Solvent Assistance in Ruthenium-Mediated Alkyne to Vinylidene Isomerizations
The complex [Cp*RuCl(iPr2PNHPy)] (1) reacts with 1-alkynes HCâĄCR (R = COOMe, C6H4CF3) in
dichloromethane furnishing the corresponding vinylidene complexes [Cp*RuâĄCâĄCHR(iPr2PNHPy)]Cl (R = COOMe (2a-
Cl), C6H4CF3 (2b-Cl)), whereas reaction of 1 with NaBPh4 in MeOH followed by addition of HCâĄCR (R = COOMe,
C6H4CF3) yields the metastable Ï-alkyne complexes [Cp*Ru(η2-HCâĄCR)(iPr2PNHPy)][BPh4] (R = COOMe (3a-BPh4),
C6H4CF3 (3b-BPh4)). The transformation of 3a-BPh4/3b-BPh4 into their respective vinylidene isomers in dichloromethane is
very slow and requires hours to its completion. However, this process is accelerated by addition of LiCl in methanol solution.
Reaction of 1 with HCâĄCR (R = COOMe, C6H4CF3) in MeOH goes through the intermediacy of the Ï-alkyne complexes
[Cp*Ru(η2-HCâĄCR)(iPr2PNHPy)]Cl (R = COOMe (3a-Cl), C6H4CF3 (3b-Cl)), which rearrange to vinylidenes in minutes,
i.e., much faster than their counterparts containing the [BPh4]â anion. The kinetics of these isomerizations has been studied in
solution by NMR. With the help of DFT studies, these observations have been interpreted in terms of chloride- and methanolassisted
hydrogen migrations. Calculations suggest participation of a hydridoâalkynyl intermediate in the process, in which the
hydrogen atom can be transferred from the metal to the ÎČ-carbon by means of species with weak basic character acting as proton
shuttles
Versatile Coordination of Cyclopentadienyl-Arene Ligands and Its Role in Titanium-Catalyzed Ethylene Trimerization
Cationic titanium(IV) complexes with ansa-(η5-cyclopentadienyl,η6-arene) ligands were synthesized and characterized by X-ray crystallography. The strength of the metal-arene interaction in these systems was studied by variable-temperature NMR spectroscopy. Complexes with a C1 bridge between the cyclopentadienyl and arene moieties feature hemilabile coordination behavior of the ligand and consequently are active ethylene trimerization catalysts. Reaction of the titanium(IV) dimethyl cations with CO results in conversion to the analogous cationic titanium(II) dicarbonyl species. Metal-to-ligand backdonation in these formally low-valent complexes gives rise to a strongly bonded, partially reduced arene moiety. In contrast to the η6-arene coordination mode observed for titanium, the more electron-rich vanadium(V) cations [cyclopentadienyl-arene]V(NiPr2)(NC6H4-4-Me)+ feature η1-arene binding, as determined by a crystallographic study. The three different metal-arene coordination modes that we experimentally observed model intermediates in the cycle for titanium-catalyzed ethylene trimerization. The nature of the metal-arene interaction in these systems was studied by DFT calculations.
Counteranion-Dependent Reaction Pathways in the Protonation of Cationic RutheniumâVinylidene Complexes
The tetraphenylborate salts of the cationic vinylidene complexes [Cp*Ru=C=CHR(iPr2PNHPy)]+ (R = p-C6H4CF3 (1a-BPh4), Ph (1b-BPh4), p-C6H4CH3 (1c- BPh4), p-C6H4Br (1d-BPh4), tBu (1e-BPh4), H (1f-BPh4)) have been protonated using an excess of HBF4·OEt2 in CD2Cl2, furnishing the dicationic carbyne complexes [Cp*RuâĄCCH2R(iPr2PNHPy)]2+ (R = p-C6H4CF3 (2a), Ph (2b), p-C6H4CH3 (2c), p-C6H4Br (2d), tBu (2e), H (2f)), which were characterized in solution at low temperature by NMR spectroscopy. The corresponding reaction of the chloride salts 1a-Cl, 1b-Cl, 1c-Cl, and 1d-Cl followed a different pathway, instead affording the novel alkene complexes [Cp*RuCl(Îș1(N),η2(C,C)-C5H4N-NHPiPr2CH=CHR)][BF4] (3aâd). In these species, the entering proton is located at the α- carbon atom of the former vinylidene ligand, which also forms a PâC bond with the phosphorus atom of the iPr2PNHPy ligand. To shed light on the reaction mechanism, DFT calculations have been performed by considering several protonation sites. The computational results suggest metal protonation followed by insertion. The coordination of chloride to ruthenium leads to alkenyl species which can undergo a PâC coupling to yield the corresponding alkene complexes. The noncoordinating nature of [BPh4]â does not allow the stabilization of the unsaturated species coming from the insertion step, thus preventing this alternative pathway
TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations
TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracyâcost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-BetheâSalpeter methods, second-order MĂžllerâPlesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLEâs functionality, including excited-state methods, RPA and Greenâs function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLEâs current licensing, distribution, and support model are discussed, and an overview of TURBOMOLEâs development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted
TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations
TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracyâcost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-BetheâSalpeter methods, second-order MĂžllerâPlesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLEâs functionality, including excited-state methods, RPA and Greenâs function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLEâs current licensing, distribution, and support model are discussed, and an overview of TURBOMOLEâs development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted
Present day greenhouse gases could cause more frequent and longer Dust Bowl heatwaves
Substantial warming occurred across North America, Europe and the Arctic over the early twentieth century1, including an increase in global drought2, that was partially forced by rising greenhouse gases (GHGs)3. The period included the 1930s Dust Bowl drought4,5,6,7 across North Americaâs Great Plains that caused widespread crop failures4,8, large dust storms9 and considerable out-migration10. This coincided with the central United States experiencing its hottest summers of the twentieth century11,12 in 1934 and 1936, with over 40 heatwave days and maximum temperatures surpassing 44â°C at some locations13,14. Here we use a large-ensemble regional modelling framework to show that GHG increases caused slightly enhanced heatwave activity over the eastern United States during 1934 and 1936. Instead of asking how a present-day heatwave would behave in a world without climate warming, we ask how these 1930s heatwaves would behave with present-day GHGs. Heatwave activity in similarly rare events would be much larger under todayâs atmospheric GHG forcing and the return period of a 1-in-100-year heatwave summer (as observed in 1936) would be reduced to about 1-in-40âyears. A key driver of the increasing heatwave activity and intensity is reduced evaporative cooling and increased sensible heating during dry springs and summers
- âŠ