66 research outputs found

    Different mechanisms are implicated in ERBB2 gene overexpression in breast and in other cancers

    Get PDF
    The ERBB2 gene is overexpressed in 30% of breast cancers and this has been correlated with poor prognosis. ERBB2 is upregulated in other cancers such as prostate, pancreas, colon and ovary. In breast cancer cells, the mechanisms leading to ERBB2 gene overexpression are increased transcription and gene amplification. In these cancers, AP-2 transcription factors are involved in ERBB2 overexpression, and AP-2 levels are correlated with p185(c-erbB-2) levels. In this work, we wanted to know if the same molecular mechanisms are responsible for the ERBB2 upregulation in non-breast cancers. We compared ERBB2 gene copy number, p185(c-erbB-2) and mRNA levels with AP-2 levels in several ovary, prostate, colon and pancreas cancer cells. A moderate expression of erbB-2 mRNA and protein were observed in some cells without gene amplification. In contrast to breast cancer cells, AP-2 factors were absent or low in some non-breast cells which did express ERBB2. It is thus likely that AP-2 is not a major player in the increased levels of erbB-2 transcripts in non-breast cancer cells. The transcriptional activity of the ERBB2 promoter in colon and ovary cancer cells was estimated using reporter vectors. The results showed that the promoter regions involved in ERBB2 gene overexpression in breast cancer cells are different from those that lead to the gene upregulation in colon and ovary cancers. In conclusion, our results indicate that different transcriptional and post-transcriptional mechanisms are responsible for the increased levels of erbB-2 transcript and protein in breast and non-breast cancer cells

    Epigenetic re-wiring of breast cancer by pharmacological targeting of C-terminal binding protein

    Get PDF
    The C-terminal binding protein (CtBP) is an NADH-dependent dimeric family of nuclear proteins that scaffold interactions between transcriptional regulators and chromatin-modifying complexes. Its association with poor survival in several cancers implicates CtBP as a promising target for pharmacological intervention. We employed computer-assisted drug design to search for CtBP inhibitors, using quantitative structure-activity relationship (QSAR) modeling and docking. Functional screening of these drugs identified 4 compounds with low toxicity and high water solubility. Micro molar concentrations of these CtBP inhibitors produces significant de-repression of epigenetically silenced pro-epithelial genes, preferentially in the triple-negative breast cancer cell line MDA-MB-231. This epigenetic reprogramming occurs through eviction of CtBP from gene promoters; disrupted recruitment of chromatin-modifying protein complexes containing LSD1, and HDAC1; and re-wiring of activating histone marks at targeted genes. In functional assays, CtBP inhibition disrupts CtBP dimerization, decreases cell migration, abolishes cellular invasion, and improves DNA repair. Combinatorial use of CtBP inhibitors with the LSD1 inhibitor pargyline has synergistic influence. Finally, integrated correlation of gene expression in breast cancer patients with nuclear levels of CtBP1 and LSD1, reveals new potential therapeutic vulnerabilities. These findings implicate a broad role for this class of compounds in strategies for epigenetically targeted therapeutic intervention

    Roles for the coactivators CBP and p300 and the APC/C E3 ubiquitin ligase in E1A-dependent cell transformation

    Get PDF
    Adenovirus early region 1A (E1A) possesses potent transforming activity when expressed in concert with activated ras or E1B genes in in vitro tissue culture systems such as embryonic human retinal neuroepithelial cells or embryonic rodent epithelial and fibroblast cells. Early region 1A has thus been used extensively and very effectively as a tool to determine the molecular mechanisms that underlie the basis of cellular transformation. In this regard, roles for the E1A-binding proteins pRb, p107, p130, cyclic AMP response element-binding protein (CBP)/p300, p400, TRRAP and CtBP in cellular transformation have been established. However, the mechanisms by which E1A promotes transformation through interaction with these partner proteins are not fully delineated. In this review, we focus on recent advances in our understanding of CBP/p300 function, particularly with regard to its relationship to the anaphase-promoting complex/cyclosome E3 ubiquitin ligase, which has recently been shown to interact and affect the activity of CBP/p300 through interaction domains that are evolutionarily conserved in E1A

    The combined immunodetection of AP-2α and YY1 transcription factors is associated with ERBB2 gene overexpression in primary breast tumors

    Get PDF
    INTRODUCTION: Overexpression of the ERBB2 oncogene is observed in about 20% of human breast tumors and is the consequence of increased transcription rates frequently associated with gene amplification. Several studies have shown a link between activator protein 2 (AP-2) transcription factors and ERBB2 gene expression in breast cancer cell lines. Moreover, the Yin Yang 1 (YY1) transcription factor has been shown to stimulate AP-2 transcriptional activity on the ERBB2 promoter in vitro. In this report, we examined the relationships between ERBB2, AP-2alpha, and YY1 both in breast cancer tissue specimens and in a mammary cancer cell line. METHODS: ERBB2, AP-2alpha, and YY1 protein levels were analyzed by immunohistochemistry in a panel of 55 primary breast tumors. ERBB2 gene amplification status was determined by fluorescent in situ hybridization. Correlations were evaluated by a chi2 test at a p value of less than 0.05. The functional role of AP-2alpha and YY1 on ERBB2 gene expression was analyzed by small interfering RNA (siRNA) transfection in the BT-474 mammary cancer cell line followed by real-time reverse transcription-polymerase chain reaction and Western blotting. RESULTS: We observed a statistically significant correlation between ERBB2 and AP-2alpha levels in the tumors (p < 0.01). Moreover, associations were found between ERBB2 protein level and the combined high expression of AP-2alpha and YY1 (p < 0.02) as well as between the expression of AP-2alpha and YY1 (p < 0.001). Furthermore, the levels of both AP-2alpha and YY1 proteins were inversely correlated to ERBB2 gene amplification status in the tumors (p < 0.01). Transfection of siRNAs targeting AP-2alpha and AP-2gamma mRNAs in the BT-474 breast cancer cell line repressed the expression of the endogenous ERBB2 gene at both the mRNA and protein levels. Moreover, the additional transfection of an siRNA directed against the YY1 transcript further reduced the ERBB2 protein level, suggesting that AP-2 and YY1 transcription factors cooperate to stimulate the transcription of the ERBB2 gene. CONCLUSION: This study highlights the role of both AP-2alpha and YY1 transcription factors in ERBB2 oncogene overexpression in breast tumors. Our results also suggest that high ERBB2 expression may result either from gene amplification or from increased transcription factor levels

    ZEB1 Links p63 and p73 in a Novel Neuronal Survival Pathway Rapidly Induced in Response to Cortical Ischemia

    Get PDF
    Background: Acute hypoxic/ischemic insults to the forebrain, often resulting in significant cellular loss of the cortical parenchyma, are a major cause of debilitating injury in the industrialized world. A clearer understanding of the pro-death/ pro-survival signaling pathways and their downstream targets is critical to the development of therapeutic interventions to mitigate permanent neurological damage. Methodology/Principal Findings: We demonstrate here that the transcriptional repressor ZEB1, thought to be involved in regulating the timing and spatial boundaries of basic-Helix-Loop-Helix transactivator-mediated neurogenic determination/ differentiation programs, functions to link a pro-survival transcriptional cascade rapidly induced in cortical neurons in response to experimentally induced ischemia. Employing histological, tissue culture, and molecular biological read-outs, we show that this novel pro-survival response, initiated through the rapid induction of p63, is mediated ultimately by the transcriptional repression of a pro-apoptotic isoform of p73 by ZEB1. We show further that this phylogenetically conserved pathway is induced as well in the human cortex subjected to episodes of clinically relevant stroke. Conclusions/Significance: The data presented here provide the first evidence that ZEB1 induction is part of a protective response by neurons to ischemia. The stroke-induced increase in ZEB1 mRNA and protein levels in cortical neurons is both developmentally and phylogenetically conserved and may therefore be part of a fundamental cellular response to thi

    Characterization of the SNAG and SLUG Domains of Snail2 in the Repression of E-Cadherin and EMT Induction: Modulation by Serine 4 Phosphorylation

    Get PDF
    Snail1 and Snail2, two highly related members of the Snail superfamily, are direct transcriptional repressors of E-cadherin and EMT inducers. Previous comparative gene profiling analyses have revealed important differences in the gene expression pattern regulated by Snail1 and Snail2, indicating functional differences between both factors. The molecular mechanism of Snail1-mediated repression has been elucidated to some extent, but very little is presently known on the repression mediated by Snail2. In the present work, we report on the characterization of Snail2 repression of E-cadherin and its regulation by phosphorylation. Both the N-terminal SNAG and the central SLUG domains of Snail2 are required for efficient repression of the E-cadherin promoter. The co-repressor NCoR interacts with Snail2 through the SNAG domain, while CtBP1 is recruited through the SLUG domain. Interestingly, the SNAG domain is absolutely required for EMT induction while the SLUG domain plays a negative modulation of Snail2 mediated EMT. Additionally, we identify here novel in vivo phosphorylation sites at serine 4 and serine 88 of Snail2 and demonstrate the functional implication of serine 4 in the regulation of Snail2-mediated repressor activity of E-cadherin and in Snail2 induction of EMT

    TWIST1 Is Expressed in Colorectal Carcinomas and Predicts Patient Survival

    Get PDF
    TWIST1 is a transcription factor that belongs to the family of basic helix-loop-helix proteins involved in epithelial-to-mesenchymal transition and invasion processes. The TWIST1 protein possesses oncogenic, drug-resistant, angiogenic and invasive properties, and has been related with several human tumors and other pathologies. Colorectal cancer is one of the tumors in which TWIST1 is over-expressed, but its involvement in the clinical outcome of the disease is still unclear. We tested, by RT-PCR, the expression levels of TWIST1 in normal and tumor paired-sample tissues from a series of 151 colorectal cancer patients, in order to investigate its prognostic value as a tumor marker. TWIST1 expression was restricted to tumor tissues (86.1%) and correlated with lymph node metastasis (LNM). Adjusted analysis showed that the expression levels of TWIST1 correlated with overall survival (OS) and disease-free survival (DFS). Importantly, TWIST1 expression levels predicted OS specifically at stages I and II. Moreover, patients with stage II tumors and high TWIST1 levels showed even shorter survival than patients with stage III tumors. These results suggest that TWIST1 expression levels could be a tumor indicator in stage II patients and help select patients at greater risk of poor prognosis who might benefit from adjuvant chemotherapy
    • …
    corecore