938 research outputs found

    A study of local and non-local spatial densities in quantum field theory

    Get PDF
    We use a one-dimensional model system to compare the predictions of two different 'yardsticks' to compute the position of a particle from its quantum field theoretical state. Based on the first yardstick (defined by the Newton-Wigner position operator), the spatial density can be arbitrarily narrow and its time-evolution is superluminal for short time intervals. Furthermore, two spatially distant particles might be able to interact with each other outside the light cone, which is manifested by an asymmetric spreading of the spatial density. The second yardstick (defined by the quantum field operator) does not permit localized states and the time evolution is subluminal.Comment: 29 pages, 3 figure

    Magnetic control of the pair creation in spatially localized supercritical fields

    Get PDF
    We examine the impact of a perpendicular magnetic field on the creation mechanism of electron-positron pairs in a supercritical static electric field, where both fields are localized along the direction of the electric field. In the case where the spatial extent of the magnetic field exceeds that of the electric field, quantum field theoretical simulations based on the Dirac equation predict a suppression of pair creation even if the electric field is supercritical. Furthermore, an arbitrarily small magnetic field outside the interaction zone can bring the creation process even to a complete halt, if it is sufficiently extended. The mechanism for this magnetically induced complete shutoff can be associated with a reopening of the mass gap and the emergence of electrically dressed Landau levels

    Schmidt Analysis of Pure-State Entanglement

    Full text link
    We examine the application of Schmidt-mode analysis to pure state entanglement. Several examples permitting exact analytic calculation of Schmidt eigenvalues and eigenfunctions are included, as well as evaluation of the associated degree of entanglement.Comment: 5 pages, 3 figures, for C.M. Bowden memoria

    Pair creation rates for one-dimensional fermionic and bosonic vacua

    Get PDF
    We compare the creation rates for particle-antiparticle pairs produced by a supercritical force field for fermionic and bosonic model systems. The rates obtained from the Dirac and Klein-Gordon equations can be computed directly from the quantum-mechanical transmission coefficients describing the scattering of an incoming particle with the supercritical potential barrier. We provide a unified framework that shows that the bosonic rates can exceed the fermionic ones, as one could expect from the Pauli-exclusion principle for the fermion system. This imbalance for small but supercritical forces is associated with the occurrence of negative bosonic transmission coefficients of arbitrary size for the Klein-Gordon system, while the Dirac coefficient is positive and bound by unity. We confirm the transmission coefficients with time-dependent scattering simulations. For large forces, however, the fermionic and bosonic pair-creation rates are surprisingly close to each other. The predicted pair creation rates also match the slopes of the time-dependent particle probabilities obtained from large-scale ab initio numerical simulations based on quantum field theory

    Space-time properties of a boson-dressed fermion for the Yukawa model

    Get PDF
    We analyze the interaction of fermions and bosons through a one-dimensional Yukawa model. We numerically compute the energy eigenstates that represent a physical fermion, which is a superposition of bare fermionic and bosonic eigenstates of the uncoupled Hamiltonian. It turns out that even fast bare fermions require only low-momentum dressing bosons, which attach themselves to the fast fermion through quantum correlations. We compare the space-time evolution of a physical fermion with that of its bare counterpart and show the importance of using dressed observables. The time evolution of the center of mass as well as the wave packet\u27s spatial width suggests that the physical particle has a lower mass than the sum of the masses of its bare constituents. The numerically predicted dressed mass agrees with that from lowest-order perturbation theory as well as with the renormalized mass obtained from the corresponding Feynman graphs. For a given momentum, this lower mass leads to a faster physical particle and a different relativistic spreading behavior of the wave packet

    Enhancement of electron-positron pair creation due to transient excitation of field-induced bound states

    Get PDF
    We study the creation of electron-positron pairs induced by two spatially separated electric fields that vary periodically in time. The results are based on large-scale computer simulations of the time-dependent Dirac equation in reduced spatial dimensions. When the separation of the fields is very large, the pair creation is caused by multiphoton transitions and mainly determined by the frequency of the fields. However, for small spatial separations a coherence effect can be observed that can enhance or reduce the particle yield compared to the case of two infinitely separated fields. If the travel time for a created electron or positron between both field locations becomes comparable to the period of the oscillating fields, we observe peaks in the energy spectrum which can be explained in terms of field-induced transient bound states

    Bosonic analog of the Klein paradox

    Get PDF
    The standard Klein paradox describes how an incoming electron scatters off a supercritical electrostatic barrier that is so strong that it can generate electron- positron pairs. This fermionic system has been widely discussed in textbooks to illustrate some of the discrepancies between quantum mechanical and quantum field theoretical descriptions for the pair creation process. We compare the fermionic dynamics with that of the corresponding bosonic system. We point out that the direct counterpart of the Pauli exclusion principle (the central mechanism to resolve the fermionic Klein paradox) is stimulated emission, which leads to the resolution of the analogous bosonic paradox

    Exponential enhancement of field-induced pair creation from the bosonic vacuum

    Get PDF
    Using numerical solutions to quantum field theory, the creation of boson-antiboson pairs from the vacuum under a very strong localized external electric field is explored. The simulations reveal that the initial linear increase of the number of particles turns into an exponential growth. This self-amplification can be understood as the result of the interaction of the previously generated particles with the creation process. While the number of particles keeps increasing, the spatial shape of the (normalized) charge density of the created particles reaches a universal form that can be related to the bound states of the supercritical potential well. We accompany the space-time resolved quantum field theoretical simulations with a model calculation that allows us to interpret the numerical simulations in terms of simple classical mechanical concepts
    corecore