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Pair creation rates for one-dimensional fermionic and bosonic vacua
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We compare the creation rates for particle-antiparticle pairs produced by a supercritical force field for
fermionic and bosonic model systems. The rates obtained from the Dirac and Klein-Gordon equations can be
computed directly from the quantum-mechanical transmission coefficients describing the scattering of an
incoming particle with the supercritical potential barrier. We provide a unified framework that shows that the
bosonic rates can exceed the fermionic ones, as one could expect from the Pauli-exclusion principle for the
fermion system. This imbalance for small but supercritical forces is associated with the occurrence of negative
bosonic transmission coefficients of arbitrary size for the Klein-Gordon system, while the Dirac coefficient is
positive and bound by unity. We confirm the transmission coefficients with time-dependent scattering simula-
tions. For large forces, however, the fermionic and bosonic pair-creation rates are surprisingly close to each
other. The predicted pair creation rates also match the slopes of the time-dependent particle probabilities

obtained from large-scale ab initio numerical simulations based on quantum field theory.
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I. INTRODUCTION

The creation of electron-positron pairs from the vacuum
under a supercritical field is one of the most striking predic-
tions of quantum electrodynamics [1]. This so-called sponta-
neous breakdown process of the vacuum, however, has not
been observed directly. There were exciting experimental at-
tempts in the 1980s to create these supercritical fields by
colliding two highly charged relativistic ions onto each other
[2,3]. While the first experimental data confirmed the pre-
dicted creation of positrons [4], it was later believed that the
particles originated from the unavoidable nuclear processes
[5] and not necessarily from the field induced breakdown of
the vacuum. One can expect that very high laser fields (when
focused) might exceed the predicted threshold for this pro-
cess [6,7] in the next decade. A purely electromagnetically
based observation would certainly open up new areas of
study to better understand how energy can be converted into
matter.

Numerous theoretical works have been devoted to obtain
more accurate quantitative predictions for realistic and spe-
cific laboratory conditions while minimizing any simplifying
assumptions [8—12]. Other works have focused more on ex-
amining the underlying mechanisms and on general funda-
mental questions concerning the pair creation processes, and
also on the appropriate quantum field theoretical framework
[13,14]. Our work belongs to the second category and we try
to obtain a better understanding of the importance of the
fermionic Pauli-exclusion principle for the pair creation pro-
cess. Space-time resolved model calculation based on quan-
tum field theory have shown that an incoming electron can
suppress the pair creation process due to the Pauli blocking
associated with occupied states [15,16]. To examine the rel-
evance of the Pauli blocking for the breakdown of the
vacuum we need to compare the predictions with an equiva-
lent system that obeys a different particle statistics. To make
a fair and transparent comparison, we require an analysis
based on a universal approach and need a bosonic system
that has the same nonrelativistic limit as the fermion system.
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We chose a supercritical barrier and solve the quantum field
theory based on the Dirac equation for fermions and on the
Klein-Gordon equation for bosons. The quantum-mechanical
aspects of each system have been discussed in the literature
separately and with different frameworks, so direct compari-
sons are difficult. Some of these works predict quantitatively
different quantum-mechanical data and interpretations
[1,17-19]. Direct verification of the predictions are possible
with ab initio quantum field theoretical calculations to clarify
these issues.

The purpose of this work is fourfold. We want to provide
a universal theoretical approach and apply it to a direct fer-
mion to boson comparison for a specific force field. We point
out the importance of the sign and magnitude of the trans-
mission coefficient associated with the quantum-mechanical
system and its relationship to the pair creation process. We
also provide time-dependent particle probabilities from an ab
initio quantum field theoretical simulation for the Klein-
Gordon system. We show that the Pauli suppression reduces
the pair creation rate for a fermionic system (relative to the
bosonic system) only for a limited range of force fields. In
fact, in the early transient regime more bosons can be cre-
ated. Furthermore, in the limit of extremely large forces, both
rates are essentially identical.

The paper is organized as follows. In Sec. II we review
the framework of calculating bosonic and fermionic pair-
creation rates from the vacuum expectation value of the elec-
tric current. In Sec. III we compute transmission coefficients
for a specific external force. In Sec. IV the transmission co-
efficients are confirmed by time-dependent quantum-
mechanical wave-packet calculations. In Sec. V the fermi-
onic and bosonic pair creation rates are compared. In Sec. VI
an ab initio quantum field theoretical numerical calculation
based on the Dirac and Klein-Gordon (KG) equation is in-
troduced to simulate the decay of the vacuum with time res-
olution. The resulting time-dependent probabilities for the
particles grow in the steady-state regime linearly as a func-
tion of time and the corresponding slope matches the rates
predicted from the quantum-mechanical transmission coeffi-
cient perfectly. In the last section we give a brief summary
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and an outlook on the implications of the results for the
bosonic Klein paradox. In our four appendices we discuss
technical details such as the unusual boundary conditions for
the Dirac and KG equations, and compare our approach with
the data and conclusions obtained in previous works.

II. BOSONIC AND FERMIONIC PAIR-CREATION
RATES FROM THE CURRENT OPERATOR

The time evolution of the systems are described by the
Dirac equation for the fermions and Klein-Gordon equation
for the bosons, id¢(z,t)/ dt=he(z,t). The two Hamiltonians
take the form (in atomic units)

hp = coyp. + o3¢ + V(z) (2.1a)

hxg=p2/2 N+ o3c* + V(z) (2.1b)

Here V(z) denotes the external electrostatic potential. For our
numerical examples, we use the potential barrier studied by
Sauter [20], V(z)=V[ 1 +tanh(z/ W)]/2, where W is the spatial
extend of the corresponding force. For a better comparison,
we assume that the fermion and boson masses as well as the
amounts of the charges are identical, m=1 a.u. and ¢
=1 au.

We focus our analysis on the direction of the force field (z
axis) and redefine p,=p. We can reduce the usual four-
component spinor wave functions (for the Dirac case) to only

two, and describe the fermionic as well as bosonic states

with two-component vectors ¢(z,t):[f,2j. This dimensional

reduction is possible as the interaction with the time-
independent external force field is modeled by an electric
potential V(z) that is proportional to the unit operator in
spinor space and the dynamics of the spin is not affected. For
example, if we choose the spin to be along the z direction
then only the first and third components of each of the free-
energy eigenstates are nonzero. As a result, any general state
for the Dirac system can be reduced to only two components.
If we choose the Dirac representation for the « matrices, the
kinetic term ca_p,+c?B in the Dirac Hamiltonian becomes
simply cap,+c?03, where o are usual the 2X 2 Pauli ma-
trices denoted by o =|! 1,0,=1% §'l,o3=I,_]]. The nilpo-
tent matrix N used in the Klein-Gordon equation (2.1b) is
denoted by N= o3 +io,=|_| '] Had we chosen the x direc-
tion for the force, the first and forth spinor component were
nonzero but the Hamiltonian would take the same form. The
corresponding wave function for the Klein-Gordon system
represents a spin-zero particle and therefore has only two
components from the beginning. Such a simplified model has
been used for fermions to study several aspects of the quan-
tum relativistic dynamics including positive and negative-
energy spectra [21-23].

While the Dirac Hamiltonian /Ay, is Hermitian, the Klein-
Gordon Hamiltonian hgg is not and thus leads to special
properties concerning the inner product and conserved quan-
tities. As the Feshbach-Villars form [19,24-28] of the Klein-
Gordon equation (2.1b) is not as commonly used as its usual
second-order differential equation in time, we should add a
few comments here.
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Due to its nonhermiticity, only the combined set of left-
hand side (lhs) and right-hand side (rhs) eigenvectors of hgg
[29] leads to a biorthogonal basis system. However, hgg has
a special symmetry property. As its Hermitian conjugate
form can be related to the original operator via hI{G
=03hkg03, the required lhs eigenvectors can be obtained di-
rectly from the right-hand side quantities via (E|= (o;|E))*.
It follows also that the operator o3k is Hermitian, a prop-
erty sometimes referred to as pseudohermiticity [25,26]. To
accommodate for this symmetry and to stay within the mani-
fold of rhs eigenvectors, one can equivalently introduce a

generalized scalar product [27] (¢b,| dy) ={(b,| 03y
Alternatively, using this generalized scalar product, one

can define the adjoint of an operator A as A= o34 o3, where
the dagger denotes the usual transposition and complex con-
jugation. We note that hgg is (generalized) Hermitian with
regard to the generalized scalar product, i.e., (¢a|hKG¢b>g

=(hgGda| Py OF hyg=hyg, while the Dirac Hamiltonian is
Hermitian, i.e., (¢, |hpdy)=(hpe,| dp)-

As we will see in Sec. IV below, this property has also
consequences for the time-evolution operators exp(-iht).
While the Dirac propagator preserves the usual norm
(B $=Jdzl| b (z.0)P+| a0} of the  two-component
wave function, the Klein-Gordon propagator is only “gener-
alized” unitary and preserves (¢| ) =[dz{|};(z,1)]?
—|a(z.0) ).

The central quantities in quantum field theory are the two
fermionic and bosonic field operators \IAID and ‘f’Kg. The time
evolution of both of these operators [30,31] can be obtained
from either the Schrodinger-like equation, i a‘ff(t)/ ot
=hW(7), or the Heisenberg equation, ioW(r)/ gt=[¥,H]. The
corresponding quantum field theoretical Hamiltonians H can
be obtained from their quantum-mechanical limiting case via
I:ID=’\i,IT)hD\i,D and I:IKG=\1}1+(G0-3hKG\f,KG' Each of these op-
erators can be expanded in terms of creation and annihilation
operators. As the energy of the created particle is expected to
be in the range ¢?><E<V-c? for long times we omit other
expansion terms outside this energy range,

V= f dEf\(E)|F) + f dEfYE)|Fy),  (2.2a)

W= f dEb,(E)|B,) + f dEb}(E)|By).  (2.2b)

Here the states |F) and |B) can be chosen as the quantum-
mechanical energy eigenstates of i and hgg. The fermionic
operators fulfill the commutator relation [f,(E), JA‘I(E -
=[»(E).fi(E")]_= S(E-E'), while the bosonic operators an-
ticommute, [b,(E),b{(E")],=[b,(E),b}(E")],= N E-E").
Even though the expansion of the field operators is chosen
here in the dressed basis, it could have been expressed
equivalently with respect to the force-free basis states and
the corresponding field-free particle creation and annihilation
operators (see Sec. VI). In fact, the identity of these two
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expansions in this Schrodinger picture can be used to relate
the dressed and undressed operators to each other via the
resulting Bogoliubov Egs [1,4,32].

For simplicity let us take a supercritical step potential
(W—0) as a special case, V(z)=V60(z). Here 6(z) denotes the
Heaviside unit step function, defined as 6(z) =0.5(|z|+z)/|z|.
The corresponding energy eigenfunctions are doubly degen-
erate for each energy E. For the Dirac system the relevant
subset of states can be chosen as

|F))=

.= P:@)p =[Wp.(p) + rpWp, (= p)]16(- 2)

+1pIWp_(q) 6(z) (2.3a)

|F2) = |=pi= q.9)p = [10TWp,(= p)]6O(= 2) + [Wp_(~ q)
+rpWp_(9)]6(2) (2.3b)
and for the Klein-Gordon system as

|Bl>=

.~ P:q)xG = [Wke+(P) + rkgWka+ (= p)16(= 2)
+txgIWke-(9) 0(z2) (2.4a)

|By) = |- p:= 4.@)xc = [tk I Wi+ (- p)10(- 2)

+[Wieo-(= @) + regWie-(¢)16(z)
(2.4b)

with the positive momenta p=+(E’-c*)/c and ¢
= \[(E-V)?-c*]/c. The specific form of the two-component
spinor states W(p,z) and their interpretation can be found in
Appendixes A-D. There we will also derive the specific form
of the coefficients 1, t, and 7 and 7 in terms of the energy of
the incoming waves. Here it is only important to note that the
scattering state |p,—p:¢q) corresponds to an incoming particle
from the left with momentum p, while the corresponding
orthogonal scattering state with the same energy, |-p:—¢,q),
describes an incoming particle with momentum —g entering
the force region (around z=0) from the right side.

We will show how these quantum-mechanical states can
contribute to finding the pair creation rates. If we assume that
the supercritical barrier has been turned on slowly in time,
then the initial force-free vacuum evolves adiabatically into
the corresponding “dressed” state for the system with the
potential. We denote this dressed state by |[vac)). To be con-
sistent, this vacuum state has a vanishing excitation of the
corresponding “dressed” energy eigenmodes, |F) and |B).

In operator language, this corresponds to f,(E)||lvac))
=f,(E)|vac))=0 as well as b,(E)|vac))=b,(E)||lvac))=0.
The second condition can be expressed equivalently as
by(E)bY(E")||lvac)y=S(E—E')|vac)) and fo(E)fi(E")|vac))
=8(E-E')||vac)).

It is important, that in Eq. (2.2) we have assigned the

creation (and not annihilation) operator f;(E) and bAZ(E),
to the states |F,) and |B,). For the case of the fermions, this
choice is arbitrary [33], however, for the expansion of the
bosonic operator the above choice is essential. Had we as-
signed the annihilation operators fz(E) and I;Z(E), respec-

tively, to the states |F,) and |B,) in the fields W, the first
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identity above, as f;(E)fz(E’)Hvac’)):6(E—E')||Vac’>)
would still hold for fermions, while the required equality for
the bosons IQE(E)EZ(E’)Hvac’)):5(E—E’)||vac’)) cannot be
derived, as b,(E)|vac’)) and I;;(E’)Hvac’)) can be both non-
zero. We thus find that the correct approach of Ref. [34] for
fermions cannot be easily generalized for bosons. We will
confirm these important choices with ab initio simulations
below in Sec. V.

While viewed from a dressed particle picture, the state
[vac)y is “empty,” from a force-free environment, however,
the dressed vacuum is characterized by a constant flow of
fermions or bosons to the left, and a flow of their corre-
sponding antiparticles to the right (under the barrier). To
evaluate this amount (pair creation rate), we have to calculate
the quantum field theoretical expectation value of the current
operator [35] in the fermionic or bosonic state ||vac)).

j = {vac||j|[vac)).

In order to have a consistent comparison between the fer-
mions and bosons, we define j to represent the electrical
current and associate the energy states of positive energy
with positive charges for the Dirac as well as for the Klein-
Gordon system. Correspondingly, for a given wave function
¢ the quantum-mechanical charge density has to be defined
as pp=dhdp and pxg= PrT3dkg. In order to fulfill the
continuity equation (dp/dt+dj/dz=0) and the conservation
law (fdzp(z,t)=const.) for both Hamiltonians, the two
quantum-mechanical electric currents have to take the form
Jo=cdhoi¢p and jxo=[bico3Npdra—(pdic) 03N dal/ 2.
The corresponding quantum field operator versions of the
currents are obtained by replacing the states ¢ with the field

(2.5)

operators ¥ from Eq. (2.2). In order to predict consistently a
total charge of zero for their respective vacuum states, the
expressions also need to be antisymmetrized and symme-
trized [36,37],

jD = C[@EUI@D - "i’D(Tl\f’]T)]/Q, (263.)

Jka= [‘i,IZGU sNpWyg - (P‘f'IT(G) NPy
+ Wy NpWi — (pWe) osNT L 14, (2.6b)

We can insert the field operators from Eq. (2.2) into Eq. (2.6)
and insert the current operators into Eq. (2.5) to obtain the
pair creation rates

jD=Cf dE((Fy|oFy) = (F\|oF))), (2.7a)
JKG= f dE{(B,|NpB,) — (pB,|NB,)
+(B,|NpB,) - (pB,|NB/)}/4. (2.7b)

If we insert the special solutions for |F) and |B) of Egs.
(2.3) and (2.4) and their adjoints into these expressions, we
obtain the final results
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ip=- f : dETo(E)/(2), (2.82)

V—c?
jKC,:fz dETy(E)/(2m). (2.8b)

Here we used the abbreviations Tp(E)=|tp|> J and
Txc(E)=—|txg|> J. Even though the operator algebra for
both systems is entirely different, we obtain (except the mi-
nus sign) in both cases the functionally identical dependence
of the pair creation current on the transmission coefficient
associated with the corresponding quantum-mechanical scat-
tering system. Even though the current could depend on the
position z, it is constant and therefore consistent with our
steady-state assumption. We also note that Eq. (2.8) holds
independently of the choice of charge of the incoming par-
ticle used to compute T(E). In fact, the direction (sign) of the
created current is determined uniquely by the sign of the
potential V(z). In our case V(z) was chosen repulsive with
regard to an (hypothetically) incoming (from z=-%) positive
charge. In this case the supercritical potential would create
positive charges that are ejected into the negative z direction
and negative charges into the +z direction. In this situation
the created current is negative for all values of z. We will see
below that this sign is fully consistent with our expression of
Eqgs. (2.8), as Tp(E) is always positive, while Txg(E) is al-
ways negative.

Had we computed the vacuum expectation value of the
momentum (instead of the electric current) we would have
obtained a negative value for z<<0 and a positive value for
0 < z. This shows that indeed positive (ejected to the left) and
negative charges (ejected to the right) are created at the bar-
rier.

To avoid any misconception from the very beginning for
Tp(E) and Tgg(E), it is crucial to point out that because of
the supercriticality of the potential, neither of these math-
ematical functions describes a physical-scattering situation.
If a real particle were injected into a supercritical force re-
gion, it would get reflected with 100% probability [15,16].
However, this incoming particle would modify the supercriti-
cality induced pair creation process at the barrier that occurs
due to the supercriticality. To describe this more complicated
process accurately requires a quantum field theory, which is
also related to the so-called Klein paradox [15,16,18,38,39].

III. TRANSMISSION COEFFICIENTS FOR A SPECIFIC
EXTERNAL FORCE

Even though the functional relationship between the pair
creation probability and the quantum-mechanical transmis-
sion coefficient T is surprisingly identical for the bosons and
fermions, the actual rates can be substantially different. To
have a consistent framework it is essential to have a univer-
sal definition for 7. Based on the continuity equation above,
both the Dirac and the Klein-Gordon system have the prop-
erty that at the potential step the (vectorial) sum of the in-
coming current density j;,. (which is positive in our case
as we assume the incoming particle has a positive charge)
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and the reflected current j,.; should be identical to the trans-
mitted current density, i.e., Jine+Jrefi=Juwans- 10 be general,
a transmission coefficient should be defined by the ratio of
the transmitted current density to the incoming density,
T=jyuns/ Jine and the reflection coefficient as R=—j .1/ jine-
We have introduced the minus sign to guarantee a positive
coefficient R, as the reflected current always points in the
opposite direction of the incoming current. As a result we
always have R+T=1, independent of the direction or charge
of the incoming particle and independent of whether the sys-
tem is fermionic or bosonic, or whether the potential is sub-
or supercritical. This conclusion is different from previous
findings, for a discussion see [1,17-19] and Appendix D.

To be quantitative, we analyze the special case of the
Sauter potential [20] V(z)=V[ 1 +tanh(z/ W)]/2, for which the
transmission coefficients can be obtained analytically in the
subcritical (V<E-c?) and supercritical (E+c><V) scatter-
ing regime. In Appendixes B and C we derive explicitly the
functional form of these coefficients for the special case W
=0 and show the unique boundary conditions for the fermion
and bosonic Hamiltonians. The functional dependence on the
energy of the transmission coefficients depends on the re-
gime.

For completeness, we begin here with the over-the-barrier
regime for which the incoming energy E is larger than the
potential height V,

B sinh[ wpW]sinh[ 7rg W]
© sinh[m(Vic + p + g)W/2]sinh[ 7(Vie — p — q)Wi2]
(3.1a)

__cosh[#@(p + g)W] - cosh[m(p — g) W)
 cosh[ [ (WV/c)? = 1]"%] + cosh[m(p + ¢) W]
(3.1b)

KG

Here p is again the momentum of the incoming particle, p
=\(E’-c*)/c and q is the smaller momentum the particle
takes over the barrier ¢=\[(E-V)?=c*]/c. In the nonrela-
tivistic limit (E— c?) and (V—0) both equations predict the
identical transmission strength, so any difference between
both expressions is a purely relativistic effect. For W—0,
both expressions simplify significantly to

e -9E+) -pVP
[(p+(E+c?) - pV]P

Tp= (3.2a)

Txc=4pq/(p + q)*. (3.2b)

In the next regime E—c*>< V< E+c? the incoming energy
is less than the barrier, but the potential is not yet strong
enough. As a result we have, except a finite tunneling (expo-
nential damping), no transmission under the barrier, Tp
=Txs=0. In this context we also point out that the literature
[22,34] uses sometimes the term “Klein tunneling” for the
supercritical case of nonzero transmission under the barrier.
This term is a little bit misleading as quantum-mechanical
tunneling by its very nature always involves exponential at-
tenuation.
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FIG. 1. The transmission coefficient T, and Tk for the Dirac
and Klein-Gordon equation as a function of the potential strength V
for a fixed energy E(=1.5 c?). The four circles are obtained from
the area of the transmitted wave-function solution obtained from a
time-dependent scattering simulation.

For the decay of the vacuum and the pair creation rates of
Eq. (2.8), the supercritical limit is most important; here, the
potential height V is extremely high, E+c><V. The corre-
sponding transmission coefficients are given by

_ sinh[ wpW]sinh[ rg W]
~ sinh[#(Vic + p — g)W/2]sinh[7(V/c - p + q)W/2]
(3.3a)

cosh[ 7(p — q)W] - cosh[7(p + q) W]

KG™ cosh{m](WV/c)* — 11"} + cosh[m(p - g) W]’
(3.3b)
For W— 0, both expressions simplify to
+q)(E+c) -pV]?
root Lt ELApVE
[(p-g)(E+c?)-pV]
Txa=~4pa/(p-q)*. (3.4b)

The interesting negative sign of the KG transmission co-
efficient is related to a sign change of the local Klein-Gordon
charge density ¢yg(z.t)'o3¢ks(z,1) under the barrier. In
contrast, the sign of the charge density ¢p(z,1) dp(z,1) re-
mains positive. We return to this important sign change in
more detail and confirm it in Sec. IV. We note that also in the
supercritical regime, we still have a positive momentum,
q=\[(E-V)'~c"/e.

In Fig. 1 we show T}, (dashed lines) and Tk as a function
of the height of the potential V for five widths W of the
potential for an energy of E=1.5 c2. For comparison, in the
over-the-barrier transmission regime (V< E—c?) the classical
transmission coefficient is always 1. In fact, a transmission
that is less than unity is only caused by the steepness of the
barrier and is therefore a purely quantum-mechanical effect.
For the slowest ramp-up potential (with W=2/¢) the Dirac
and Klein-Gordon coefficients predict nearly the same trans-
mission, while in the limit of W=0, the transmission Tkg is
less than T, showing that the Klein-Gordon system is more
sensitive to this quantum-mechanical effect.

PHYSICAL REVIEW A 80, 062105 (2009)

There are several striking differences between both coef-
ficients in the important supercritical regime (E+c><V).
While the transmission coefficient T for the fermionic sys-
tem remains positive and less than 1, Tk is negative and can
approach even minus infinity in the limit of the step poten-
tial. This singularity is located at the potential height V
=2E. However, this singularity occurs only for the special
case W=0 and the minimum for Tg shifts to higher values
of V for increasing W.

It is important to note that a negative coefficient does not
mean that any transmitted particles evolve to the left under
the barrier. It simply reflects the sign change of the bosonic
charge density under the barrier as we will show in Sec. IV.
At the same time, the corresponding reflection coefficient
R(=1-T) can exceed 1. A reflection coefficient larger than
unity suggests that the reflected current is larger than the
incoming current. This bosonic phenomenon is reminiscent
of super-radiance [35]. However, one has to be very careful
with such an interpretation and the association of this math-
ematical observation with a (real) physical effect. It is im-
portant to keep in mind that we discuss only mathematical
properties here using a (purely) quantum-mechanical de-
scription beyond its real range of validity. As in a supercriti-
cal system the number of particles changes, a physically cor-
rect description requires quantum field theory.

We also note that while the Dirac transmission depends
only weakly on W, the Klein-Gordon transmission is quite
sensitive. Also the superstrong field limit (V— ) is entirely
different for bosons and fermions. For example, for W=0, T
approaches the nonzero value 2v(E?>-c*)/[E+\(E*-c%)],
while Tkg predicts a vanishing transmission Txg=0. For W
# 0 and large energies, however, Tt approaches 1 and Txg
approaches —1. The graphs for Tgg(V) for different widths W
can even cross as a function of V, while those for T(V) do
not.

IV. TIME-DEPENDENT QUANTUM-MECHANICAL
WAVE-PACKET CALCULATIONS

As the choice of the momentum q under the barrier is
presented differently in some of the literature (see Appendix
D), we have to confirm our choice with a time-dependent
calculation. Time-dependent calculations are unambiguous
yardsticks as they predict the evolution independent of any
prior choices of boundary or continuity conditions or signs
for the momentum of the final state. We have prepared an
initial wave packet ¢(z,t=0)=[dEC(E)W,(p,z) as a super-
position of free-energy eigenstates W, (p,z) with a Gaussian
amplitude that is centered around energy E=1.5 c?. We dis-
play in the Appendix A the special form of these two-
component free-energy eigenstates W,(p,z). The complex
amplitudes {C(E)~ exp[—(p—po)*lexp[—ipzol|ldp/dE|} were
chosen such that the wave packet is initially localized at z
=z (==4 a.u.), to the left of the potential barrier and has an
initial spatial width of 1 a.u. The initial densities pp(z)
=¢(z,1=0)"¢(z,1=0) and pgg(z)=P(z,1=0)"a3(z,1=0) are
identical and shown by the dashed lines in Fig. 2 (note the
different vertical scales).

In order to evolve these two-component initial states
in time, we use the split-operator technique [40-43] in which
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FIG. 2. The final charge density for the Dirac equation (top) and
for the Klein-Gordon equation (bottom) for the quantum-
mechanical scattering off a supercritical potential V(z). The incom-
ing density is identical in both cases and indicated by the dashed
lines (note the different vertical scales). The incoming energy E
=1.5 ¢? corresponds to a central momentum of p=(5/4)c and an
incoming velocity of 0.745 c. The numbers under the densities are
the corresponding areas. [V(z)=V[1+tanh(z/W)]/2 with strength
V=3¢? and width W=0.3/¢, the final time is 0.1 a.u., the spatial
axis was discretized into 32 768 points and we used 40 000 tempo-
ral steps.]

the time-evolution operator exp[—ihr] is decomposed into
the consecutive actions of the operators exp[—ihAt]. Each
of these N, subinterval operators can be approximated
[with a local error O(Af%)] by exp[—iht]=~exp[—iVAt/2]
exp[—ihoAt]exp[—-iVAr/2], where h denotes the free kinetic
Hamiltonian and exp[—iVAt/2] is the action due to the po-
tential only. While the action of exp[—iVAz/2] can be per-
formed conveniently in discretized coordinate space with N,
grid points, the action of the kinetic term can be calculated in
momentum space for the Fourier-transformed state.

The kinetic operator exp[—ihyAt] can be brought into its
diagonal form and the diagonal matrix can be exponentiated.
For the Dirac system, the kinetic 2 X2 matrix operator Up,
=exp[-ihpAt]=exp[—i(cop+0o3c?)At] takes the following
form with the four matrix elements:

(Up)y.1 = cos(EAt) — ic? sin(EAt)/E, (4.1a)
(Up) 1, =—icp sin(EAL)/E, (4.1b)
(Up)21=(Up) 2 (4.1c)

(Up)az = cos(EA?) + ic? sin(EAY)/E, (4.1d)

where E=\(c*+c?p?) denotes the energy. For the Klein-
Gordon system, the kinetic 2X?2 matrix operator Ugg
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=exp[—ihgcAt]=exp[—i(p?/ 2N+ o3c?)At] has the matrix el-
ements

(Ukg)1.1 = cos(EA) —i(p*/2 + ¢*)sin(EAN)/E, (4.2a)

(Ukg)12=—i(p*2)sin(EAN/E, (4.2b)

(Ukg)a.1 = i(p*2)sin(EAL)/E, (4.2¢)

(Ukg)2.n = cos(EAL) + i(p*2 + A)sin(EAL)/E. (4.2d)

As a consequence of the different symmetry properties of the
Hamiltonians, the operator Up is unitary and conserves the
“norm” (¢| @) of the states, while the operator Uk is unitary
only with respect to the generalized scalar product {¢| )y

and therefore fulfills only U'=U=03U" ;.

The final charge distribution at time 7r=0.1 a.u. is shown
by the continuous line. As expected, the total area in both
cases is conserved and equal to 1, corresponding to the con-
served total charge. While the Dirac case the positive density
remains positive, the Klein-Gordon case predicts a negative
transmitted charge density. More quantitatively, for a simu-
lation with N,=32 768 (corresponding to a grid spacing of
Az=9.15X10"* a.u. =0.12/¢) and N,=40 000 (correspond-
ing to a temporal step size Ar=2.5X10"° a.u. =0.047/c?)
we find areas of 0.57559 and 0.424 41 under the reflected
and transmitted Dirac density, whereas the Klein-Gordon
case predicts an area of 3.6449 for the reflected and —2.6449
for the transmitted charge density. The predicted transmis-
sion coefficients for the monochromatic incoming particles
(with energy E=1.5 c?, V=3c%, and W=0.3/c) from Eq.
(3.3) amount to TpH=0.424 35 and Txg=-2.6452, respec-
tively. Thus the areas under the transmitted densities differ
by less than 0.02% from the predicted values confirming our
sign choice for the momentum q and also the validity the
assumptions leading to Eq. (3.3). A similarly excellent agree-
ment was also obtained for other parameters and is indicated
by the circles in Fig. 1.

The small remaining discrepancies between the areas and
T(E) are due to the fact that an initially spatially localized
wave packet is not fully monoenergetic and contains also
other energy eigenstates. If the transmission coefficient T(E)
is averaged over the corresponding energy range of the quan-
tum state with the appropriate weighting factors, an even
better agreement can be obtained.

We also observe that the numerical rate of convergence
with respect to the number of temporal and spatial grid
points is less for the KG system than for the more robust
Dirac system. This is consistent with our discussion in the
previous section, where the KG system was found to be more
sensitive to quantum effects.

V. COMPARISON OF THE PAIR CREATION RATES

By using the expressions for transmission coefficients in
the supercritical regime of Eq. (3.3), we can now analyze the
fermionic and bosonic pair creation rates for identical param-
eters. In Fig. 3 we show jp and jgg as a function of the
potential strength V for W=0.3/c. We see that for any
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FIG. 3. The pair creation rates for a supercritical force field for
the fermionic (dashed line) and bosonic (continous line) systems as
predicted by Eq. (2.8). The width of the potential was W=0.3/c.
The circles are the corresponding rates obtained from the long-time
behavior of the large-scale time-dependent ab initio simulations
(see Sec. VI and Fig. 5).

strength of the potential V, the rate of boson-antiboson pair
creation exceeds the Dirac rate. This imbalance is expected
as the simultaneous generation of identical fermions should
be suppressed due to the Pauli blocking (exclusion principle)
whereas each boson mode can be occupied with an arbi-
trarily high number.

Even though limit of extremely large forces (V— ) is
presently beyond experimental range, it is nevertheless inter-
esting to point out a universal behavior. It turns out, that both
rates scale linearly with V, j(W,V)=a(W)V. As in this limit
both transmission coefficients approach =1 (for large energy
E and independent of the width W) the energy integrals for j
become trivial and the constant «(W) becomes identical for
Jp and jgg, i.e., j(W,V)==1/(2m)V. In other words, in the
extreme force limit, the different fermion and bosonic com-
mutator relationships (including the Pauli suppression) seem
to become irrelevant. We are not able to give any intuitive
explanation for this surprisingly universal and particle-type
independent scaling behavior. However, if we perform the
limit (W—0) first, then the transmission Txg becomes sin-
gular at E=V/2 (see Fig. 1) and the energy integral diverges
(jxg=—=), while Tp, remains 1.

In Fig. 4 we also show the different kinetic-energy spectra
of the created particles. This quantity is directly proportional
to the energy dependence of the transmission coefficient
|T(E)| for a given potential V (>2c?). Both spectra reach
their maximum at E=V/2. However, the energy distribution
for the created fermions is much more flat than the one for
the bosons, suggesting a relative suppression of bosons with
very small and very large energies relative to those with
E=V/2, or a bosonic enhancement.

VI. RATES FROM TIME-DEPENDENT QUANTUM
FIELD THEORETICAL SOLUTIONS

The derivation of the expressions of the rates [Eq. (2.8)]
was based on several simplifying assumptions, such as a
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FIG. 4. The energy spectrum of the ejected particles in the long-
time limit for the supercritical decay. The potential strength is V
=3¢? and the width is W=0.3/c.

vanishing width of the force field, asymptotically large times
and that particles are only created in the energy range c’
<E<V-c2. To establish the validity of these assumptions, a
full time-dependent quantum field theoretical simulation of
the evolution of an initial (force-free) vacuum state must be
performed. Numerical details of the procedure for the Dirac
case can be found in the literature [14,15,43,44]. With some
modifications, this approach can be also applied to obtain the
time evolution of the bosonic field operator. Differences are
based on the different commutator relationships and the fact
the underlying Hamiltonian for the KG system is Hermitian
only for the generalized scalar product.

The field operator for both systems may be expanded in
terms of positive and negative eigenstates of the force-free
Hamiltonians |p) and |n), respectively,

V(1) = J dE b (|E,) + J

2

CAEAWIE).  (6.1)

These states are normalized for Dirac Hamiltonian according
to (E,|E,)=8E,~E,) and (E,|E,)=8E,-E,), and for
Klein-Gordon Hamiltonian according to (Ep|03Epr)=6(Ep
-E,/) and (E,|03E,)=—8E,—E,). As we noted, the field
operator satisfies both the Heisenberg and Schrodinger equa-
tions id/atW=[¥,H] and id/rV=hV¥, with Hy=V"hy¥
and HKG:\IAf*oghKG‘IA'. Thus it may also be expanded in
terms of

2

W(r) = f 2dE,,zS,,U(r)|E,,>+ J ’ dE,bIUM|E,). (6.2)

—00

The solution to the time-dependent particle annihilation op-
erator can be obtained as

b,(1) = f dEy by U, (1) + f
C

—o0

2

dEdiU, (1)

n~p.n

(6.3)

Here we denote for Dirac system, U, ,(r)=(E,|Up(?)|E,)
and U, ,(t)=(E,|Up(1)|E,) and for Klein-Gordon system,
Uy () =(E |03 UkcOIE) and U () =(E, |03 U0 En.
The part of the field operator associated with positve energy
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FIG. 5. The time dependence of the total number of created
pairs during the supercritical decay. The slopes in the long-time
regime are the circles shown in Fig. 3. The potential strength is V
=3c¢? and the width is W=0.3/c. [N,=512 spatial grid points]

states is d= [ Zoszpl;p(t)|Ep) and the total number of particle

pairs can be calculated as Np(r)=((vac|®(1)dD(z)||vac)) and

Nig(1)={(vac| DT (1) o3D(1)||vac)). If we calculate the time
evolution of these quantities, we obtain

N(t) = j dEpf dE,U, (DU, ,(1)". (6.4)
Computationally, the matrix elements U, , may be obtained
by evolving |E,) in time to get U(t)|E,). This state is then
projected onto the state |E ) to determine U, ,. This compua-
tion requires large amount of CPU time since the time evo-
lution has to be accomplished numerically based on the split-
operator method discussed in Sec. IV. Since N(r) requires the
summation over all states |E,), the simulations require
N,N.log(N,) computer operations. In practice, we use N,
=512 N,=10000 and a typical quantum field simulation
takes about 10 hours on a Macintosh with Intel processors.
We will refer the reader to numerical details of these large-
scale simulations to a future work and just state here the
main results. In Fig. 5 we show the time evolution of the
expectation value of the total number of particles N(z). In a
time-dependent simulation, the supercritical force field V(z)
must be turned on first. For simplicity, we have chosen a
sudden turn on.

We see that after an initial transient period of a duration
proportional to 2/c¢? (107 a.u.), the number of generated
particle pairs increases linearly with time. The slope in this
steady-state regime should be compared to the rates as pre-
dicted in Fig. 3. For example, for the simulation data in Fig.
3, the numerical values of the slopes can be read of as
~1044 and ~5325. This compares very well with the corre-
sponding rates 1040.64 and 5349.23 from Fig. 3 for V=3¢
We have repeated the simulation for nine different strengths
of the potential V (from V=2c? to 6¢?) and included the
numerically determined slopes as circles in Fig. 3. The
agreement is obvious and gives clear credence to the analyti-
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cal derivations of Sec. II and III above. We also note that
during the transient part the number of created bosons N(¢)
can be less than those for the fermions. We presently do not
have an intuitive explanation for this observation.

VII. SUMMARY AND SHORT DISCUSSION

The purpose of this work has been, first, to provide a
consistent and universal approach to study the supercritical
decay of the bosonic and fermionic vacua. Second, using this
framework we compared the pair creation rates for a bosonic
and fermionic system under identical conditions for a spe-
cific supercritical force. We found that the bosonic pair cre-
ation rate exceeds the fermionic one for intermediate force
strengths. For very large V, however, the rates are identical
suggesting that the pair creation process is rather indepen-
dent of other pairs and independent of the particle statistics.
Third, our views are in contrast with some of the literature
about the signs and magnitudes of the quantum-mechanical
transmission coefficients in the supercritical force region.
Some of these are not just a matter of interpretation, but
could lead to quantitative different predictions concerning
the Klein paradox. Fourth, we provided a simulation of the
time-dependent particle probabilities N(z) from an ab initio
quantum field theoretical simulation for the Klein-Gordon
system. The obtained data show the transition from a tran-
sient regime (whose characteristics depend on the way the
force is temporally turned on) to the universal steady-state
regime in which the probability grows linearly with time. In
this regime the numerically obtained slopes dN(¢)/dt confirm
quite accurately the predictions of approximate but analytical
predictions for the pair creation rates.

An important future question is the impact on this finding
for the bosonic Klein paradox that has been recently resolved
for the fermionic system [15,16]. For the Klein-paradox situ-
ation the pair creation process at the supercritical potential
step is being accompanied by an (additional) incoming fer-
mion. As the fermion is reflected (with R=1 and no trans-
mission under the barrier), it suppresses the pair creation
process due to Pauli blocking. A new fermion-antifermion
pair cannot be created during those times when the incoming
fermion occupies the space close to the force region. Only
once the incoming fermion is completely scattered and has
left the force region, the usual pair creation process sets in
again. The obvious question is how the Klein paradox can be
resolved also for a bosonic system. As this resolution re-
quires a full time-dependent simulation that incorporates the
dynamics of the incoming boson as well as the pair creation
process, we will devote a future project to this task.

In the Dirac system, the quantum-mechanical transmis-
sion coefficient plays a fascinating dual role. Its energy inte-
gral is the main contributor to the steady-state pair creation
rate at the supercritical barrier (without any incoming par-
ticle) while at the same time the transmitted wave-function
portion [whose size is directly proportional to T(E)] repre-
sents the amount of pair-creation suppression for the case an
incoming particle (of energy E) is injected into the spatial
pair creation regime. It might be interesting to examine
whether in the corresponding Klein-Gordon system, the cor-
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responding negative and arbitrarily large transmission coef-
ficient can play a similar role to describe the effect of an
incoming boson on the pair creation process. The pair cre-
ation could be enhanced associated with the magnitude of the
bosonic transmission coefficient. This can be shown by using
a full quantum field theoretical simulation, similarly as the
one reported for the fermion system [15,16].

Ultimately and most importantly, of course, these rates
should be tested with experimental data and we can hope that
one day an experimental confirmation of an observed spon-
taneous decay of the vacuum due to an external force can be
made. To examine the predictions of quantum electrodynam-
ics for the interaction of ultrarelativistic laser fields with
various systems is certainly a topic of wide interest. For a
few works that were published very recently, see, e.g.,
[45-51].
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APPENDIX A: EIGENSTATES FOR DIRAC
AND KLEIN-GORDON HAMILTONIANS
FOR THE STEP POTENTIAL

The energy eigenspectra of the force-free Hamiltonians
hp=cop+o;3¢® and hgg=p?/2 N+o;c? are identical with
a negative-energy continuum from —% to —c?, and positive
energies from c? to «. The eigenvectors for the Dirac equa-
tion (h]; W)y=E|W)) for the positive and negative energies
E= *+\(c*+c?p?) are given by

VE+¢
sen(p)VE - ¢? -

- 2
Wp.(p,2) = 2B on (for E=c?),
(A1)
|:sgn(p) V-E-¢? ]
\r’T—l-cz e~ip? _ 2
Wp_(p,2) = V2B o (for E=-¢?),
(A2)

and are normalized according to (Wp.(p)|Wp-(p'))=4&E,
—E, ). Each state is doubly degenerate and sgn(p) denotes
the sign of the momentum p. The Klein-Gordon states
(hkg|Wke)=E|Wke)) are normalized according to the sign of
their energy, (Wyg+(p) |03 Wkg=(p))= = 8(E,—E,) and take
the form

2

cc +FE
e = o B2 ). (A3
KG+\P) = — or E=c"),
’ VA4c®E) 2w
&’ +E
&’ -E e 5
Wko-p)=———= —— (for E=-¢%). (A4)
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We should stress that for a positive momentum p, all of
the four states above have a positive phase velocity. In other
words, the center of mass of a coherent superposition of
these states centered around a positive p would move to the
right, independent of whether we assign a certain charge to
the underlying particle.

APPENDIX B: THE DIRAC BOUNDARY CONDITIONS

For the case of a step potential V(z,1)=V6(z) the states of
Egs. (A1)—(A4) serve as the basic building blocks for the
dressed eigenstates. For a given positive energy E and a su-
percritical potential (2¢><V) we assume that for z<<0 the
eigenstate is a superposition of W,(p,z) and W, (-p,z) with
p=\[E?-c*]/c, while for 0<z it is a superposition of the
states W_(g,z) and W_(—gq,z), where g denotes the positive
momentum ¢ = \J’m/ ¢ and where we have to re-
place the parameter E in Egs. (A2) and (A4) with E-V,

p.— P:q)p =[Wp.(p) + rpWp,(= p)]6(-2)

+[1pIWp_(9)]0(2), (B1)
|_p:_ q’q>D = [IDIWD+(_ P)]e(— Z)
+[Wp_(=q) + rpWp_(9)16(z).  (B2)

We abbreviate the Jacobian J=-(pEy)/(gE) and Z=1/7.
These states are normalized to (p,—p:q|p’,—p':q¢")p
=8(E,~E,) and (-p:=q.q|-p":=q",q")p=8E,~E,). One
can also show that these two states are orthogonal to each
other, (p,—p:q|-p:-q,q)p=0.

In order to find the correct expansion coefficients rp
and 7p, the states on both sides of the step barrier have to
fulfill the appropriate matching condition. For the Dirac
case, Ed(z)=[—ico,d!dz+0o3c®+VH(z)]h(z), we integrate
both sides from z=—¢ to z=+& and obtain E e[p(+e)
+d(~¢)]=—ico| p(+e) +ica  P(~e) + o3[ Pl(+8) + P(~¢)]
+Vep(+¢e). Perform the limit € —0 and since ¢ is finite, we
obtain —ico|p(+e)+ico;p(—e)=0. This reduces to the re-
quirement that the each component of the state ¢=[$J
matches with its partner, i.e., ¢,(-g)=¢,(+¢) and ¢,(—¢)
=¢,(+¢&). The resulting two equations for two unknowns rp
and fp, can be solved and we obtain finally

_ —(cq)cp) = (Eg+ ) (E+c?)
= (cq)(cp) + (Eq+ A)E+ )

b

tnT = (1 = rp) V{EL(E = A/[E(E, + )]} (B3)

If re-evaluate the current according to jp=¢'co| ¢ we obtain

Jo(@) = [*plQmE) (1 = [rp]) 6= 2) + sgn(q)lrp*TO(2)}
(B4)

where the continuity of current at z=0, jp(-&)=/p(+¢), fol-
lows automatically. But the continuity of j by itself would
not be a sufficient condition to obtain r, and 7 as two con-
ditions are required. The continuity results in 1—|rp|?

=sgn(q)|ip|*T.
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APPENDIX C: KLEIN-GORDON
BOUNDARY CONDITIONS

Let us consider the corresponding superposition for the
KG system

P.— @)k = [Wka+(P) + rkg W+ (= p)16(= 2)
+ [tk TWke-(9)16(2), (c1n

- = 4.9)xG = [1k6T Wi+ (— p)16(= 2)

+[Wig-(= ) + rkWia-(9)16(2).
(C2)

We assume again p>0 and also J=(pE,)/(|g|E) with E_
=E-V. These states are normalized to y(p,—p:q|oslp’,
-p':q")xc=0E,~E;) and y(-p:=q.qlos|-p’':=q".q kg
=-8(E,~E,). Note the negative sign despite the fact that the
state has positive energy. One can also show that these two
states are orthogonal to each other. yq(p,—p:qlos|-p:
=4.9)xc=0-

In case of the Klein-Gordon system, the boundary condi-
tions are more complicated than for the Dirac case. The start-
ing point is again the corresponding stationary equation,
Ed(2)=[-F1 712N+ 03>+ VO(z)]$(z). If we integrate both
sides of this equation from z=-& to z=+&, we obtain E
elp(+&)+ Pp(—)]==N¢' (+&)/2+Ng' (=&)/ 2+ o3c*e[ p(+€)
+p(—&)]+Vep(+¢), where the prime denotes the spatial
derivative. We can perform the limit e —0 and since ¢ is
finite, we obtain —N¢'(+&)+N¢'(—&)=0. Using the explicit
form of the matrix N, this reduces to the first boundary con-
dition ¢j(—¢)+ py(—&)= ¢ (+&)+ @5 (+¢). If we integrate the
original energy eigenvalue equation via [®.dz [* dz’, and
follow similar arguments as above, we obtain the second
boundary condition: ¢,(—&)+ @,(—&)=p,(+&)+ P,(+&). In
other words, in contrast to the Dirac equation, the state by
itself can be discontinuous for a step potential. A similar
conclusion was obtained in Ref. [19] where the boundary
conditions where derived from the exact solution for the Sau-
ter potential with finite W and then its limit W—0 as taken.
If apply these two boundary conditions to Egs. (C1) and
(C2), we can again eliminate fxg and solve for rgg to obtain

rec=(p+49)(p-q),

txaJ = (2p)/(p = PN(- E/E). (C3)
If we calculate the current density according to jkg
=[¢"osNpp—(pp')o3Nep]/2 we obtain
Jka(@) = [?p/2mE){(1 = |rg|’) (= 2) = sgn(q)|txal* TO(2)}-
(C4)
The continuity of current at z=0 leads to 1—|rggl?
=—sgn(q)|txc|*J.
APPENDIX D: THE SIGN OF THE MOMENTUM ¢
UNDER THE BARRIER

Let us first comment on the Dirac case. Here the spatial
density ¢'¢ remains positive under the unitary time evolu-
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tion and the total area is conserved. For a traditional scatter-
ing situation (characterized by an incoming particle) it is
therefore clear that any transmitted or reflected portion can-
not exceed the area of the incoming state. Correspondingly,
any reasonable reflection or transmission coefficient has to
be less than 1. This requirement excludes also automatically
any negative coefficients.

In our analysis above we chose the traditional scattering
state |p,—p:q) and (its orthogonal partner) |-p:—q,q) as
the two degenerate energy states. One could have equiva-
lently chosen another pair to span the same Hilbert space, the
state |p,—p:—q) and its corresponding orthogonal partner
|p:=q,q). Here it is important to note that the state with the
negative momentum —q, |p,—p:—q) describes a wave func-
tion that approaches the barrier from the left and from the
right side. In order to fulfill the required boundary conditions
(Appendix B), the state |p,—p:—¢q) would lead to two expan-
sion coefficients for the corresponding free states for z>0
and z<<0 where one exceeds unity and the other is negative.
However, due to the ambiguity of which side of the barrier
corresponds to the incoming portion one should not use the
language of negative transmission coefficients or of reflec-
tion coefficients that exceed unity. In several standard text-
books [1,17] the coefficients for a negative momentum —¢g
were then justified in terms of quantum field theoretical pro-
cesses (pair creation at the barrier). It was argued that a
reflection larger than unity corresponds to the combination of
the reflected electron and the created electron due to the pair
creation process. The negative transmission coefficient was
interpreted as describing the flux of particles of opposite
charge (positrons) evolving under the barrier. In our opinion,
it is not satisfactory to try to interpret purely quantum-
mechanical data in terms of a quantum field theoretical lan-
guage; in the same sense as explaining data obtained from a
nonrelativistic theory in terms of relativistic phenomena is
inconsistent. We should also point out that in these calcula-
tions the important partner state |p:—q,q) was neglected. To
be more specific, for energy E=15 ¢?
and width W=0.3/c we have obtained (and confirmed with
independent numerical simulations) the transmission coeffi-
cients Tp=0.424 35 and Tgg=-2.6452, whereas for the
opposite sign of the momentum ¢, one would obtain Tp
=-0.737 158 and Txg=0.725 667.

In case of the Klein-Gordon equation, the situation is (al-
most ironically) reversed. Here the (only generalized unitary)
time evolution keeps the total charge density [dz¢ o3¢ con-
served and the integrand can be simultaneously positive and
negative as a function of the position z. In the over-barrier
scattering situation we have shown that the density does not
change its sign. However, in the important case of a super-
critical barrier, the charge density changes its sign under the
barrier. Following consistently a universal definition for the
transmission coefficient, defined in terms of the ratio of the
electric current densities 7=/ jine» W€ Obtain a negative
value. This one can even exceed —1 and approach — in this
case. However, it is important to note, that despite a negative
sign of the current density the center of a spatially localized
wave packet travels into the positive z-direction. Only a few
works have studied the KG system in its two-spinor formu-
lation. Ref. [19] defines both T and R as intrinsically positive
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quantities to study quantum-mechanical scattering. As a re-
sult in this work it depends on the size of the potential V,
whether R+7=1 or R—T=1 is the appropriate conservation
law, another not very satisfactory conclusion. A conservation
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law is more general if it does not depend on the choice of
specific numerical parameters. In fact it produces the numeri-
cal values that disagree with our simulations.
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