2,279 research outputs found

    Computational modelling of epithelial cell monolayers during infection with Listeria monocytogenes

    Get PDF
    Intracellular bacterial infections alter the normal functionality of human host cells and tissues. Infection can also modify the mechanical properties of host cells, altering the mechanical equilibrium of tissues. In order to advance our understanding of host–pathogen interactions, simplified in vitro models are normally used. However, in vitro studies present certain limitations that can be alleviated by the use of computer-based models. As complementary tools these computational models, in conjunction with in vitro experiments, can enhance our understanding of the mechanisms of action underlying infection processes. In this work, we extend our previous computer-based model to simulate infection of epithelial cells with the intracellular bacterial pathogen Listeria monocytogenes. We found that forces generated by host cells play a regulatory role in the mechanobiological response to infection. After infection, in silico cells alter their mechanical properties in order to achieve a new mechanical equilibrium. The model pointed the key role of cell–cell and cell–extracellular matrix interactions in the mechanical competition of bacterial infection. The obtained results provide a more detailed description of cell and tissue responses to infection, and could help inform future studies focused on controlling bacterial dissemination and the outcome of infection processes. © 2022 The Author(s

    Temporal variability analysis reveals biases in electronic health records due to hospital process reengineering interventions over seven years

    Full text link
    [EN] Objective To evaluate the effects of Process-Reengineering interventions on the Electronic Health Records (EHR) of a hospital over 7 years. Materials and methods Temporal Variability Assessment (TVA) based on probabilistic data quality assessment was applied to the historic monthly-batched admission data of Hospital La Fe Valencia, Spain from 2010 to 2016. Routine healthcare data with a complete EHR was expanded by processed variables such as the Charlson Comorbidity Index. Results Four Process-Reengineering interventions were detected by quantifiable effects on the EHR: (1) the hospital relocation in 2011 involved progressive reduction of admissions during the next four months, (2) the hospital services re-configuration incremented the number of inter-services transfers, (3) the care-services re-distribution led to transfers between facilities (4) the assignment to the hospital of a new area with 80,000 patients in 2015 inspired the discharge to home for follow up and the update of the pre-surgery planned admissions protocol that produced a significant decrease of the patient length of stay. Discussion TVA provides an indicator of the effect of process re-engineering interventions on healthcare practice. Evaluating the effect of facilitiesÂż relocation and increment of citizens (findings 1, 3Âż4), the impact of strategies (findings 2Âż3), and gradual changes in protocols (finding 4) may help on the hospital management by optimizing interventions based on their effect on EHRs or on data reuse. Conclusions The effects on hospitals EHR due to process re-engineering interventions can be evaluated using the TVA methodology. Being aware of conditioned variations in EHR is of the utmost importance for the reliable reuse of routine hospitalization data.F.J.P.B, C.S., J.M.G.G. and J.A.C. were funded Universitat Politecnica de Valencia, project "ANALISIS DE LA CALIDAD Y VARIABILIDAD DE DATOS MEDICOS". www.upv.es. J.M.G.G.is also partially supported by: Ministerio de Economia y Competitividad of Spain through MTS4up project (National Plan for Scientific and Technical Research and Innovation 2013-2016, No. DPI2016-80054-R); and European Commission projects H2020-SC1-2016-CNECT Project (No. 727560) and H2020-SC1-BHC-2018-2020 (No. 825750). The funders did not play any role in the study design, data collection and analysis, decision to publish, nor preparation of the manuscript.Perez-Benito, FJ.; SĂĄez Silvestre, C.; Conejero, JA.; Tortajada, S.; Valdivieso, B.; Garcia-Gomez, JM. (2019). Temporal variability analysis reveals biases in electronic health records due to hospital process reengineering interventions over seven years. PLoS ONE. 14(8):1-19. https://doi.org/10.1371/journal.pone.0220369S119148Aguilar-SavĂ©n, R. S. (2004). Business process modelling: Review and framework. International Journal of Production Economics, 90(2), 129-149. doi:10.1016/s0925-5273(03)00102-6Poulymenopoulou, M. (2003). Journal of Medical Systems, 27(4), 325-335. doi:10.1023/a:1023701219563Dadam P, Reichert M, Kuhn K. Clinical Workflows -The Killer Application for Process-oriented Information Systems? Proceedings of the 4th International Conference on Business Information Systems. London: Springer London; 2000. pp. 36–59. doi: https://doi.org/10.1007/978-1-4471-0761-3Lenz, R., & Reichert, M. (2007). IT support for healthcare processes – premises, challenges, perspectives. Data & Knowledge Engineering, 61(1), 39-58. doi:10.1016/j.datak.2006.04.007Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Amour EAEH, Ghannouchi SA. Applying Data Mining Techniques to Discover KPIs Relationships in Business Process Context. 2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). IEEE; 2017. pp. 230–237. doi: https://doi.org/10.1109/PDCAT.2017.00045Chou, Y.-C., Chen, B.-Y., Tang, Y.-Y., Qiu, Z.-J., Wu, M.-F., Wang, S.-C., 
 Chuang, W.-C. (2010). Prescription-Filling Process Reengineering of an Outpatient Pharmacy. Journal of Medical Systems, 36(2), 893-902. doi:10.1007/s10916-010-9553-5Leu, J.-D., & Huang, Y.-T. (2009). An Application of Business Process Method to the Clinical Efficiency of Hospital. Journal of Medical Systems, 35(3), 409-421. doi:10.1007/s10916-009-9376-4Gand K. Investigating on Requirements for Business Model Representations: The Case of Information Technology in Healthcare. 2017 IEEE 19th Conference on Business Informatics (CBI). IEEE; 2017. pp. 471–480. doi: https://doi.org/10.1109/CBI.2017.36Ferreira, G. S. A., Silva, U. R., Costa, A. L., & PĂĄdua, S. I. D. de D. (2018). The promotion of BPM and lean in the health sector: main results. Business Process Management Journal, 24(2), 400-424. doi:10.1108/bpmj-06-2016-0115Abdulrahman Jabour RM. Cancer Reporting: Timeliness Analysis and Process. 2016; Available: https://search.proquest.com/openview/4ecf737c5ef6d2d503e948df8031fe54/1?pq-origsite=gscholar&cbl=18750&diss=yHewitt M, Simone J V. Enhancing Data Systems to Improve the Quality of Cancer Care [Internet]. National Academy Press; 2000. Available: http://www.nap.edu/catalog/9970.htmlWeiskopf, N. G., & Weng, C. (2013). Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. Journal of the American Medical Informatics Association, 20(1), 144-151. doi:10.1136/amiajnl-2011-000681Saez C, Robles M, Garcia-Gomez JM. Comparative study of probability distribution distances to define a metric for the stability of multi-source biomedical research data. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. IEEE; 2013. pp. 3226–3229. doi: https://doi.org/10.1109/EMBC.2013.6610228SĂĄez, C., Rodrigues, P. P., Gama, J., Robles, M., & GarcĂ­a-GĂłmez, J. M. (2014). Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality. Data Mining and Knowledge Discovery, 29(4), 950-975. doi:10.1007/s10618-014-0378-6SĂĄez, C., Zurriaga, O., PĂ©rez-PanadĂ©s, J., Melchor, I., Robles, M., & GarcĂ­a-GĂłmez, J. M. (2016). Applying probabilistic temporal and multisite data quality control methods to a public health mortality registry in Spain: a systematic approach to quality control of repositories. Journal of the American Medical Informatics Association, 23(6), 1085-1095. doi:10.1093/jamia/ocw010International Ethical Guidelines for Epidemiological Studies [Internet]. Geneva: Council for International Organizations of Medical Sciences (CIOMS) in collaboration with the World Health Organization; 2009. Available: https://cioms.ch/wp-content/uploads/2017/01/International_Ethical_Guidelines_LR.pdfResearch Ethics Committee of the Universitari i PolitĂšcnic La Fe Hospital [Internet]. Available: https://www.iislafe.es/en/research/ethics-committees/Charlson, M. E., Pompei, P., Ales, K. L., & MacKenzie, C. R. (1987). A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. Journal of Chronic Diseases, 40(5), 373-383. doi:10.1016/0021-9681(87)90171-8Schneeweiss, S., Wang, P. S., Avorn, J., & Glynn, R. J. (2003). Improved Comorbidity Adjustment for Predicting Mortality in Medicare Populations. Health Services Research, 38(4), 1103-1120. doi:10.1111/1475-6773.00165Quan, H., Sundararajan, V., Halfon, P., Fong, A., Burnand, B., Luthi, J.-C., 
 Ghali, W. A. (2005). Coding Algorithms for Defining Comorbidities in ICD-9-CM and ICD-10 Administrative Data. Medical Care, 43(11), 1130-1139. doi:10.1097/01.mlr.0000182534.19832.83SĂĄez Silvestre C. Probabilistic methods for multi-source and temporal biomedical data quality assessment [Internet]. Thesis. Universitat PolitĂšcnica de ValĂšncia. 2016. doi: https://doi.org/10.4995/Thesis/10251/62188Amari S, Nagaoka H. Methods of Information Geometry [Internet]. Amer. Math. Soc. and Oxford Univ. Press. American Mathematical Society; 2000. Available: https://books.google.es/books?hl=es&lr=&id=vc2FWSo7wLUC&oi=fnd&pg=PR7&dq=Methods+of+Information+geometry&ots=4HmyCCY4PX&sig=2-dpCuwMQvEC1iREjxdfIX0yEls#v=onepage&q=MethodsofInformationgeometry&f=falseCsiszĂĄr, I., & Shields, P. C. (2004). Information Theory and Statistics: A Tutorial. Foundations and Trendsℱ in Communications and Information Theory, 1(4), 417-528. doi:10.1561/0100000004Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37(1), 145-151. doi:10.1109/18.61115M.Cover T. Elements Of Information Theory Notes [Internet]. 2006. Available: http://books.google.fr/books?id=VWq5GG6ycxMC&printsec=frontcover&dq=intitle:Elements+of+Information+Theory&hl=&cd=1&source=gbs_api%5Cnpapers2://publication/uuid/BAF426F8-5A4F-44A4-8333-FA8187160D9BBrandes, U., & Pich, C. (s. f.). Eigensolver Methods for Progressive Multidimensional Scaling of Large Data. Lecture Notes in Computer Science, 42-53. doi:10.1007/978-3-540-70904-6_6Liaw, S. T., Rahimi, A., Ray, P., Taggart, J., Dennis, S., de Lusignan, S., 
 Talaei-Khoei, A. (2013). Towards an ontology for data quality in integrated chronic disease management: A realist review of the literature. International Journal of Medical Informatics, 82(1), 10-24. doi:10.1016/j.ijmedinf.2012.10.001Arts, D. G. T. (2002). Defining and Improving Data Quality in Medical Registries: A Literature Review, Case Study, and Generic Framework. Journal of the American Medical Informatics Association, 9(6), 600-611. doi:10.1197/jamia.m1087Bray, F., & Parkin, D. M. (2009). Evaluation of data quality in the cancer registry: Principles and methods. Part I: Comparability, validity and timeliness. European Journal of Cancer, 45(5), 747-755. doi:10.1016/j.ejca.2008.11.032Parkin, D. M., & Bray, F. (2009). Evaluation of data quality in the cancer registry: Principles and methods Part II. Completeness. European Journal of Cancer, 45(5), 756-764. doi:10.1016/j.ejca.2008.11.033Fernandez-Llatas, C., Ibanez-Sanchez, G., Celda, A., Mandingorra, J., Aparici-Tortajada, L., Martinez-Millana, A., 
 Traver, V. (2019). Analyzing Medical Emergency Processes with Process Mining: The Stroke Case. Lecture Notes in Business Information Processing, 214-225. doi:10.1007/978-3-030-11641-5_17Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Van der Aalst, W., Weijters, T., & Maruster, L. (2004). Workflow mining: discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9), 1128-1142. doi:10.1109/tkde.2004.47Weijters AJMM, Van Der Aalst WMP, Alves De Medeiros AK. Process Mining with the HeuristicsMiner Algorithm [Internet]. Available: https://pdfs.semanticscholar.org/1cc3/d62e27365b8d7ed6ce93b41c193d0559d086.pdfShim, S. J., & Kumar, A. (2010). Simulation for emergency care process reengineering in hospitals. Business Process Management Journal, 16(5), 795-805. doi:10.1108/14637151011076476Svolba, G., & Bauer, P. (1999). Statistical Quality Control in Clinical Trials. Controlled Clinical Trials, 20(6), 519-530. doi:10.1016/s0197-2456(99)00029-xKahn, M. G., Raebel, M. A., Glanz, J. M., Riedlinger, K., & Steiner, J. F. (2012). A Pragmatic Framework for Single-site and Multisite Data Quality Assessment in Electronic Health Record-based Clinical Research. Medical Care, 50, S21-S29. doi:10.1097/mlr.0b013e318257dd67Batini, C., Cappiello, C., Francalanci, C., & Maurino, A. (2009). Methodologies for data quality assessment and improvement. ACM Computing Surveys, 41(3), 1-52. doi:10.1145/1541880.1541883Heinrich, B., Klier, M., & Kaiser, M. (2009). A Procedure to Develop Metrics for Currency and its Application in CRM. Journal of Data and Information Quality, 1(1), 1-28. doi:10.1145/1515693.1515697Sirgo, G., Esteban, F., GĂłmez, J., Moreno, G., RodrĂ­guez, A., Blanch, L., 
 BodĂ­, M. (2018). Validation of the ICU-DaMa tool for automatically extracting variables for minimum dataset and quality indicators: The importance of data quality assessment. International Journal of Medical Informatics, 112, 166-172. doi:10.1016/j.ijmedinf.2018.02.007Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786), 504-507. doi:10.1126/science.1127647Kohn LT, Corrigan JM. To err is human: building a safer health system. A report of the Committee on Quality of Health Care in America. 2000. p. 287. National Academies Press

    After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination

    Get PDF
    There is consensus that, distal to peripheral nerve injury, myelin and Remak cells reorganize to form cellular columns, Bungner's bands, which are indispensable for regeneration. However, knowledge of the structure of these regeneration tracks has not advanced for decades and the structure of the cells that form them, denervated or repair Schwann cells, remains obscure. Furthermore, the origin of these cells from myelin and Remak cells and their ability to give rise to myelin cells after regeneration has not been demonstrated directly, although these conversions are believed to be central to nerve repair. Using genetic lineage-tracing and scanning-block face electron microscopy, we show that injury of sciatic nerves from mice of either sex triggers extensive and unexpected Schwann cell elongation and branching to form long, parallel processes. Repair cells are 2- to 3-fold longer than myelin and Remak cells and 7- to 10-fold longer than immature Schwann cells. Remarkably, when repair cells transit back to myelinating cells, they shorten ∌7-fold to generate the typically short internodes of regenerated nerves. The present experiments define novel morphological transitions in injured nerves and show that repair Schwann cells have a cell-type-specific structure that differentiates them from other cells in the Schwann cell lineage. They also provide the first direct evidence using genetic lineage tracing for two basic assumptions in Schwann cell biology: that myelin and Remak cells generate the elongated cells that build Bungner bands in injured nerves and that such cells can transform to myelin cells after regeneration

    Beyond the First Recurrence in Scar Phenomena

    Full text link
    The scarring effect of short unstable periodic orbits up to times of the order of the first recurrence is well understood. Much less is known, however, about what happens past this short-time limit. By considering the evolution of a dynamically averaged wave packet, we show that the dynamics for longer times is controlled by only a few related short periodic orbits and their interplay.Comment: 4 pages, 4 Postscript figures, submitted to Phys. Rev. Let

    Angular moments of the decay Λb 0 → ΛΌ + ÎŒ − at low hadronic recoil

    Get PDF
    An analysis of the angular distribution of the decay Λ0 b → Λ” +” − is presented, using data collected with the LHCb detector between 2011 and 2016 and corresponding to an integrated luminosity of approximately 5 fb−1 . Angular observables are determined using a moment analysis of the angular distribution at low hadronic recoil, corresponding to the dimuon invariant mass squared range 15 < q2 < 20 GeV2/c4 . The full basis of observables is measured for the first time. The lepton-side, hadron-side and combined forward-backward asymmetries of the decay are determined to b

    Observation of the decay Bs0→D¯0K+K−

    Get PDF
    The first observation of the B0 s → DÂŻ 0KĂŸK− decay is reported, together with the most precise branching fraction measurement of the mode B0 → DÂŻ 0KĂŸK−. The results are obtained from an analysis of pp collision data corresponding to an integrated luminosity of 3.0 fb−1. The data were collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV. The branching fraction of the B0 → DÂŻ 0KĂŸK− decay is measured relative to that of the decay B0 → DÂŻ 0Ï€ĂŸÏ€âˆ’ to be BĂ°B0→DÂŻ 0KĂŸK−Þ BĂ°B0→DÂŻ 0Ï€ĂŸÏ€âˆ’Ăž ÂŒ Ă°6.9 0.4 0.3Þ%, where the first uncertainty is statistical and the second is systematic. The measured branching fraction of the B0 s → DÂŻ 0KĂŸK− decay mode relative to that of the corresponding B0 decay is BĂ°B0 s→DÂŻ 0KĂŸK−Þ BĂ°B0→DÂŻ 0KĂŸK−Þ ÂŒ Ă°93.0 8.9 6.9Þ%. Using the known branching fraction of B0 → DÂŻ 0Ï€ĂŸÏ€âˆ’, the values of BĂ°B0 →DÂŻ 0KĂŸKâˆ’ĂžÂŒĂ°6.10.40.30.3Þ×10−5 and BĂ°B0 s →DÂŻ 0KĂŸKâˆ’ĂžÂŒĂ°5.70.50.40.5Þ×10−5 are obtained, where the third uncertainties arise from the branching fraction of the decay modes B0 → DÂŻ 0Ï€ĂŸÏ€âˆ’ and B0 → DÂŻ 0KĂŸK−, respectively

    Measurement of Z → τ + τ − production in proton-proton collisions at √s=8 TeV

    Get PDF
    A measurement of Z → τ +τ − production cross-section is presented using data, corresponding to an integrated luminosity of 2 fb−1 , from pp collisions at √ s = 8 TeV collected by the LHCb experiment. The τ +τ − candidates are reconstructed in final states with the first tau lepton decaying leptonically, and the second decaying either leptonically or to one or three charged hadrons. The production cross-section is measured for Z bosons with invariant mass between 60 and 120 GeV/c2 , which decay to tau leptons with transverse momenta greater than 20 GeV/c and pseudorapidities between 2.0 and 4.5. The crosssection is determined to be σpp→Z→τ+τ− = 95.8 ± 2.1 ± 4.6 ± 0.2 ± 1.1 pb, where the first uncertainty is statistical, the second is systematic, the third is due to the LHC beam energy uncertainty, and the fourth to the integrated luminosity uncertainty. This result is compatible with NNLO Standard model predictions. The ratio of the cross-sections for Z → τ +τ − to Z → ” +” − (Z → e +e −), determined to be 1.01 ± 0.05 (1.02 ± 0.06), is consistent with the lepton-universality hypothesis in Z decays

    Search for the rare decay Λc+ →pÎŒ+ÎŒ-

    Get PDF
    The flavor-changing neutral-current (FCNC) decay Î›ĂŸ c → pÎŒĂŸÎŒâˆ’ (inclusion of the charge-conjugate processes is implied throughout) is expected to be heavily suppressed in the Standard Model (SM) by the Glashow-IliopoulosMaiani mechanism [1]. The branching fractions for shortdistance c → ulĂŸl− contributions to the transition are expected to be of OĂ°10−9Þ in the SM but can be enhanced by effects beyond the SM. However, long-distance contributions proceeding via a tree-level amplitude, with an intermediate meson resonance decaying into a dimuon pair [2,3], can increase the branching fraction up to OĂ°10−6Þ [4]. The short-distance and hadronic contributions can be separated by splitting the data set into relevant regions of dimuon mass. The Î›ĂŸ c → pÎŒĂŸÎŒâˆ’ decay has been previously searched for by the BABAR Collaboration [5], yielding 11.1 5.0 2.5 events and an upper limit on the branching fraction of 4.4 × 10−5 at 90% C.L. Similar FCNC transitions for the b-quark system (b → slĂŸl−) exhibit a pattern of consistent deviations from the current SM predictions both in branching fractions [6] and angular observables [7], with the combined significance reaching 4 to 5 standard deviations [8,9]. Processes involving c → ulĂŸl− transitions are far less explored at both the experimental and theoretical levels, which makes such measurements desirable. Similar analyses of the D system have reported evidence for the longdistance contribution [10]; however, the short-distance contributions have not been established [11]

    A measurement of the CP asymmetry difference between Λc + → pK − K + and pπ−π+ decays

    Get PDF
    The difference between the CP asymmetries in the decays Λ + c → pK−K+ and Λ + c → pπ−π + is presented. Proton-proton collision data taken at centre-of-mass energies of 7 and 8 TeV collected by the LHCb detector in 2011 and 2012 are used, corresponding to an integrated luminosity of 3 fb−1 . The Λ + c candidates are reconstructed as part of the Λ 0 b → Λ + c ” −X decay chain. In order to maximize the cancellation of production and detection asymmetries in the difference, the final-state kinematic distributions of the two samples are aligned by applying phase-space-dependent weights to the Λ + c → pπ−π + sample. This alters the definition of the integrated CP asymmetry to A wgt CP (pπ−π +). Both samples are corrected for reconstruction and selection efficiencies across the five-dimensional Λ + c decay phase space. The difference in CP asymmetries is found to be ∆A wgt CP = ACP (pK−K+) − A wgt CP (pπ−π +) = (0.30 ± 0.91 ± 0.61) %, where the first uncertainty is statistical and the second is systemati
    • 

    corecore