277 research outputs found

    Specificity of dimer formation in tropomyosins: influence of alternatively spliced exons on homodimer and heterodimer assembly

    Get PDF
    Tropomyosins consist of nearly 100% alpha-helix and assemble into parallel and in-register coiled-coil dimers. In vitro it has been established that nonmuscle as well as native muscle tropomyosins can form homodimers. However, a mixture of muscle alpha and beta tropomyosin subunits results in the formation of the thermodynamically more stable alpha/beta heterodimer. Although the assembly preference of the muscle tropomyosin heterodimer can be understood thermodynamically, the presence of multiple tropomyosin isoforms expressed in nonmuscle cells points toward a more complex principle for determining dimer formation. We have investigated the dimerization of rat tropomyosins in living cells by the use of epitope tagging with a 16-aa sequence of the influenza hemagglutinin. Employing transfection and immunoprecipitation techniques, we have analyzed the dimers formed by muscle and nonmuscle tropomyosins in rat fibroblasts. We demonstrate that the information for homo- versus heterodimerization is contained within the tropomyosin molecule itself and that the information for the selectivity is conferred by the alternatively spliced exons. These results have important implications for models of the regulation of cytoskeletal dynamics

    Calponin Developmental isoforms and a low molecular weight variant

    Get PDF
    AbstractTwo-dimensional gel analysis of basic proteins in developing human smooth muscle identifies calponin as a prominent marker of the differentiated phenotype. Adult tissue (human and mouse) typically expresses up to four calponin isoforms, three of which appear sequentially during fetal development: adult myometrial cells express the same three isoforms in primary culture in vitro and these are down-regulated, in reverse order, during the subsequent modulation of phenotype. Monospecific, polyclonal antibodies against calponin identify a lower molecular weight variant of calponin (L-calponin) that is strongly and specifically expressed in adult smooth muscles of the human urogenital tract. L-Calponin is down-regulated in benign smooth muscle derived tumors (leiomyoma) and is not expressed in primary cultures of normal uterine tissue

    Soil pH and organic matter content add explanatory power to Northern Lapwing Vanellus vanellus distribution models and suggest soil amendment as a conservation measure on upland farmland

    Get PDF
    Habitat associations of farmland birds are well studied, yet few have considered relationships between species distribution and soil properties. Charadriiform waders (shorebirds) depend upon penetrable soils, rich in invertebrate prey. Many species, such as the Northern Lapwing Vanellus vanellus, have undergone severe declines across Europe, despite being targeted by agri-environment measures. This study assessed whether there were additive effects of soil variables (depth, pH and organic matter content) in explaining Lapwing distribution, after controlling for known habitat relationships, at 89 farmland sites across Scotland. The addition of these soil variables and their association with elevation improved model fit by 55\%, in comparison with models containing only previously established habitat relationships. Lapwing density was greatest at sites at higher elevation, but only those with less peaty and less acidic soil. Lapwing distribution is being constrained between intensively managed lowland farmland with favourable soil conditions and upland sites where lower management intensity favours Lapwings but edaphic conditions limit their distribution. Trials of soil amendments such as liming are needed on higher elevation grassland sites to test whether they could contribute to conservation management for breeding Lapwings and other species of conservation concern that depend upon soil-dwelling invertebrates in grassland soils, such as Eurasian Curlew Numenius arquata, Common Starling Sturnus vulgaris and Ring Ouzel Turdus torquatus. Results from such trials could support improvement and targeting of agri-environment schemes and other conservation measures in upland grassland systems

    Lasp-1 Regulates Podosome Function

    Get PDF
    Eukaryotic cells form a variety of adhesive structures to connect with their environment and to regulate cell motility. In contrast to classical focal adhesions, podosomes, highly dynamic structures of different cell types, are actively engaged in matrix remodelling and degradation. Podosomes are composed of an actin-rich core region surrounded by a ring-like structure containing signalling molecules, motor proteins as well as cytoskeleton-associated proteins

    Localization of smoothelin in avian smooth muscle and identification of a vascular-specific isoform

    Get PDF
    AbstractSmoothelin is a smooth muscle-specific protein of minor abundance first identified via a monoclonal antibody obtained using an avian gizzard extract as antigen. Dual labelling of ultrathin sections with antibodies to smoothelin together with antibodies to other smooth muscle proteins showed that smoothelin was co-distributed with filamin and desmin in the cytoskeleton domain of the smooth muscle cell. From the finding that smoothelin, unlike desmin, was readily extracted by Triton X-100 as well as under conditions that solubilized myosin, β-actin and filamin, we conclude that smoothelin is most likely associated with the actin cytoskeleton. Western blot analysis of gizzard smooth muscle tissue revealed an immunoreactive protein band with an apparent molecular weight of 59 kDa that separated into 3–4 isolated variants, while avian vascular muscle showed a polypeptide band of 95 kDa. These results point to the presence of specific isoforms in visceral and vascular smooth muscles. The 59 kDa isoform was shown to be distinct from the 60 kDa filamin-binding protein, described by Maekawa and Sakai (FEBS Lett. 221, 68–72, 1987). As compared to other smooth muscle markers, such as calponin and SM22, smoothelin appeared very late during differentiation in the chick gizzard, on about the 18th embryonic day

    Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications.

    Get PDF
    Small extracellular vesicles (sEVs) from mesenchymal stromal/stem cells (MSCs) are transiting rapidly towards clinical applications. However, discrepancies and controversies about the biology, functions, and potency of MSC-sEVs have arisen due to several factors: the diversity of MSCs and their preparation; various methods of sEV production and separation; a lack of standardized quality assurance assays; and limited reproducibility of in vitro and in vivo functional assays. To address these issues, members of four societies (SOCRATES, ISEV, ISCT and ISBT) propose specific harmonization criteria for MSC-sEVs to facilitate data sharing and comparison, which should help to advance the field towards clinical applications. Specifically, MSC-sEVs should be defined by quantifiable metrics to identify the cellular origin of the sEVs in a preparation, presence of lipid-membrane vesicles, and the degree of physical and biochemical integrity of the vesicles. For practical purposes, new MSC-sEV preparations might also be measured against a well-characterized MSC-sEV biological reference. The ultimate goal of developing these metrics is to map aspects of MSC-sEV biology and therapeutic potency onto quantifiable features of each preparation

    LRCH Proteins: A Novel Family of Cytoskeletal Regulators

    Get PDF
    Background: Comparative genomics has revealed an unexpected level of conservation for gene products across the evolution of animal species. However, the molecular function of only a few proteins has been investigated experimentally, and the role of many animal proteins still remains unknown. Here we report the characterization of a novel family of evolutionary conserved proteins, which display specific features of cytoskeletal scaffolding proteins, referred to as LRCHs. Principal Findings: Taking advantage of the existence of a single LRCH gene in flies, dLRCH, we explored its function in cultured cells, and show that dLRCH act to stabilize the cell cortex during cell division. dLRCH depletion leads to ectopic cortical blebs and alters positioning of the mitotic spindle. We further examined the consequences of dLRCH deletion throughout development and adult life. Although dLRCH is not essential for cell division in vivo, flies lacking dLRCH display a reduced fertility and fitness, particularly when raised at extreme temperatures. Conclusion/Significance: These results support the idea that some cytoskeletal regulators are important to buffer environmental variations and ensure the proper execution of basic cellular processes, such as the control of cell shape

    International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19

    Get PDF
    STATEMENT: The International Society for Cellular and Gene Therapies (ISCT) and the International Society for Extracellular Vesicles (ISEV) recognize the potential of extracellular vesicles (EVs, including exosomes) from mesenchymal stromal cells (MSCs) and possibly other cell sources as treatments for COVID-19. Research and trials in this area are encouraged. However, ISEV and ISCT do not currently endorse the use of EVs or exosomes for any purpose in COVID-19, including but not limited to reducing cytokine storm, exerting regenerative effects or delivering drugs, pending the generation of appropriate manufacturing and quality control provisions, pre-clinical safety and efficacy data, rational clinical trial design and proper regulatory oversight

    Establishment and Validation of Computational Model for MT1-MMP Dependent ECM Degradation and Intervention Strategies

    Get PDF
    MT1-MMP is a potent invasion-promoting membrane protease employed by aggressive cancer cells. MT1-MMP localizes preferentially at membrane protrusions called invadopodia where it plays a central role in degradation of the surrounding extracellular matrix (ECM). Previous reports suggested a role for a continuous supply of MT1-MMP in ECM degradation. However, the turnover rate of MT1-MMP and the extent to which the turnover contributes to the ECM degradation at invadopodia have not been clarified. To approach this problem, we first performed FRAP (Fluorescence Recovery after Photobleaching) experiments with fluorescence-tagged MT1-MMP focusing on a single invadopodium and found very rapid recovery in FRAP signals, approximated by double-exponential plots with time constants of 26 s and 259 s. The recovery depended primarily on vesicle transport, but negligibly on lateral diffusion. Next we constructed a computational model employing the observed kinetics of the FRAP experiments. The simulations successfully reproduced our FRAP experiments. Next we inhibited the vesicle transport both experimentally, and in simulation. Addition of drugs inhibiting vesicle transport blocked ECM degradation experimentally, and the simulation showed no appreciable ECM degradation under conditions inhibiting vesicle transport. In addition, the degree of the reduction in ECM degradation depended on the degree of the reduction in the MT1-MMP turnover. Thus, our experiments and simulations have established the role of the rapid turnover of MT1-MMP in ECM degradation at invadopodia. Furthermore, our simulations suggested synergetic contributions of proteolytic activity and the MT1-MMP turnover to ECM degradation because there was a nonlinear and marked reduction in ECM degradation if both factors were reduced simultaneously. Thus our computational model provides a new in silico tool to design and evaluate intervention strategies in cancer cell invasion

    Metabolic Regulation of Invadopodia and Invasion by Acetyl-CoA Carboxylase 1 and De novo Lipogenesis

    Get PDF
    Invadopodia are membrane protrusions that facilitate matrix degradation and cellular invasion. Although lipids have been implicated in several aspects of invadopodia formation, the contributions of de novo fatty acid synthesis and lipogenesis have not been defined. Inhibition of acetyl-CoA carboxylase 1 (ACC1), the committed step of fatty acid synthesis, reduced invadopodia formation in Src-transformed 3T3 (3T3-Src) cells, and also decreased the ability to degrade gelatin. Inhibition of fatty acid synthesis through AMP-activated kinase (AMPK) activation and ACC phosphorylation also decreased invadopodia incidence. The addition of exogenous 16∶0 and 18∶1 fatty acid, products of de novo fatty acid synthesis, restored invadopodia and gelatin degradation to cells with decreased ACC1 activity. Pharmacological inhibition of ACC also altered the phospholipid profile of 3T3-Src cells, with the majority of changes occurring in the phosphatidylcholine (PC) species. Exogenous supplementation with the most abundant PC species, 34∶1 PC, restored invadopodia incidence, the ability to degrade gelatin and the ability to invade through matrigel to cells deficient in ACC1 activity. On the other hand, 30∶0 PC did not restore invadopodia and 36∶2 PC only restored invadopodia incidence and gelatin degradation, but not cellular invasion through matrigel. Pharmacological inhibition of ACC also reduced the ability of MDA-MB-231 breast, Snb19 glioblastoma, and PC-3 prostate cancer cells to invade through matrigel. Invasion of PC-3 cells through matrigel was also restored by 34∶1 PC supplementation. Collectively, the data elucidate the novel metabolic regulation of invadopodia and the invasive process by de novo fatty acid synthesis and lipogenesis
    corecore