34 research outputs found

    University–industry linkages and academic engagements: individual behaviours and firms’ barriers. Introduction to the special section

    Get PDF
    The article introduces the special section on “University–industry linkages and academic engagements: Individual behaviours and firms’ barriers”. We first revisit the latest developments of the literature and policy interest on university–industry research. We then build upon the extant literature and unpack the concept of academic engagement by further exploring the heterogeneity of UI linkages along a set of dimensions and actors involved. These are: (1) Incentives and behaviours of individual academic entrepreneurs; (2) Firms’ barriers to cooperation with public research institutions; (3) Individual behaviours, incentives and organizational bottlenecks in late developing countries. We summarize the individual contributions along these dimensions. There are overlooked individual characteristics that affect the degree of engagement of academics and scholars in cooperating with other organizations, of which gender and the non-academic background of individuals are most crucial. The notion of academic engagement should be enlarged to aspects that go beyond the commercialization or patenting of innovation, but embrace social and economic impact more at large. From the perspective of the firm, barriers to innovation might exert an effect on the likelihood to cooperate with universities and public research institutes, most especially to cope with lack of finance or access to frontier knowledge. We finally propose a research agenda that addresses the challenges ahead

    Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration.

    Get PDF
    The epicardium and its derivatives provide trophic and structural support for the developing and adult heart. Here we tested the ability of human embryonic stem cell (hESC)-derived epicardium to augment the structure and function of engineered heart tissue in vitro and to improve efficacy of hESC-cardiomyocyte grafts in infarcted athymic rat hearts. Epicardial cells markedly enhanced the contractility, myofibril structure and calcium handling of human engineered heart tissues, while reducing passive stiffness compared with mesenchymal stromal cells. Transplanted epicardial cells formed persistent fibroblast grafts in infarcted hearts. Cotransplantation of hESC-derived epicardial cells and cardiomyocytes doubled graft cardiomyocyte proliferation rates in vivo, resulting in 2.6-fold greater cardiac graft size and simultaneously augmenting graft and host vascularization. Notably, cotransplantation improved systolic function compared with hearts receiving either cardiomyocytes alone, epicardial cells alone or vehicle. The ability of epicardial cells to enhance cardiac graft size and function makes them a promising adjuvant therapeutic for cardiac repair.: This work was supported by the British Heart Foundation (BHF; Grants NH/11/1/28922, G1000847, FS/13/29/30024 and FS/18/46/33663), Oxford-Cambridge Centre for Regenerative Medicine (RM/13/3/30159), the UK Medical Research Council (MRC) and the Cambridge Hospitals National Institute for Health Research Biomedical Research Centre funding (SS), as well as National Institutes of Health Grants P01HL094374, P01GM081619, R01HL12836 and a grant from the Fondation Leducq Transatlantic Network of Excellence (CEM). J.B. was supported by a Cambridge National Institute for Health Research Biomedical Research Centre Cardiovascular Clinical Research Fellowship and subsequently, by a BHF Studentship (Grant FS/13/65/30441). DI received a University of Cambridge Commonwealth Scholarship. LG is supported by BHF Award RM/l3/3/30159 and LPO is funded by a Wellcome Trust Fellowship (203568/Z/16/Z). NF was supported by BHF grants RG/13/14/30314. NL was supported by the Biotechnology and Biological Sciences Research Council (Institute Strategic Programmes BBS/E/B/000C0419 and BBS/E/B/000C0434). SS and MB were supported by the British Heart Foundation Centre for Cardiovascular Research Excellence. Core support was provided by the Wellcome-MRC Cambridge Stem Cell Institute (203151/Z/16/Z), The authors thank Osiris for provision of the primary mesenchymal stem cells (59

    Mapping the field: a bibliometric analysis of the literature on university–industry collaborations

    Get PDF

    Neuroimmune response and sleep studies after whole body irradiation with high-LET particles

    No full text
    International audienceIn order to investigate the biological effects of galactic rays on astronaut cerebral functions after space flight, mice were exposed to different heavy ions (HZE) in whole-body conditions at doses comparable to the galactic flux: 12C, 16O and 20Ne (95 MeV/u, at 42– 76 mGy). Animals were also exposed to 42 mGy of 60Co radiation for comparison with HZE. The neuroimmune response, evaluated by interleukin-1 (IL-1) measurement, showed that this cytokine was produced 3 h after irradiation by 16O or 60Co. In contrast, neither 12C (56.7 mGy) nor 20Ne (76 mGy) induced IL-1 production. However, immunohistochemical staining of 12C-irradiated mouse brain tissue showed 2 months later a marked inflammatory reaction in the hippocampus and a diffuse response in parenchyma. Sleep studies were realized before and after exposure to 42 mGy of 16O and 76 mGy of 20Ne: only the 20Ne radiation displayed a small effect. A slight decrease in paradoxical sleep, corresponding to a reduction in the number of episodes of paradoxical sleep, was manifested between 8 and 22 days after exposure. Exposure to 12C and 16O induced no changes either in cellularity of spleen or thymus, or in caspase 3 activity (as much as four months after irradiation). Taken together, these data indicate that the CNS could be sensitive to heavy ions and that responses to HZE impact depend on the nature of the particle, the dose threshold and the time delay to develop biological processes. Differences in responses to different HZE highlight the complex biological phenomena to which astronauts are submitted during space flight

    Tuning the functional properties of lignocellulosic films by controlling the molecular and supramolecular structure of lignin

    No full text
    | openaire: EC/H2020/720303/EU//Zelcor Funding Information: This work was funded by the Bio Based Industry Joint Undertaking under the European Union's Horizon 2020 research and innovation programme within the Zelcor project (under the grant number No 720303 ), part of the COFILI project (grant number D201550245 ) for AFM measurements funded by the Grand Est Region and the European FEDER Programme and the Lignoxyl project for EPR measurements supported by the Agence Nationale de la Recherche (ANR) through the Carnot Institutes 3BCAR ( www.3bcar.fr ) and Qualiment ( https://qualiment.fr/ ) (no. 3 no. 19-CARN-001-01 and no. 16-CARN 001-01). The EPR data in this manuscript were obtained using equipment supported jointly by the French National Ministry of Research (PPF IRPE), the “Fondation pour la Recherche Médicale” (FRM DGE20061007745), and the CNRS (Department of Chemistry and Life Sciences). The IJPB benefits from the support of the LabEx Saclay Plant Sciences-SPS (ANR-10-LABX-552 0040-SPS). Funding Information: This work was funded by the Bio Based Industry Joint Undertaking under the European Union's Horizon 2020 research and innovation programme within the Zelcor project (under the grant number No 720303), part of the COFILI project (grant number D201550245) for AFM measurements funded by the Grand Est Region and the European FEDER Programme and the Lignoxyl project for EPR measurements supported by the Agence Nationale de la Recherche (ANR) through the Carnot Institutes 3BCAR (www.3bcar.fr) and Qualiment (https://qualiment.fr/) (no. 3 no. 19-CARN-001-01 and no. 16-CARN 001-01). The EPR data in this manuscript were obtained using equipment supported jointly by the French National Ministry of Research (PPF IRPE), the ?Fondation pour la Recherche M?dicale? (FRM DGE20061007745), and the CNRS (Department of Chemistry and Life Sciences). The IJPB benefits from the support of the LabEx Saclay Plant Sciences-SPS (ANR-10-LABX-552 0040-SPS). Publisher Copyright: © 2021 The Authors Copyright: Copyright2021 Elsevier B.V., All rights reserved.This study investigated the relationships between lignin molecular and supramolecular structures and their functional properties within cellulose-based solid matrix, used as a model biodegradable polymer carrier. Two types of derivatives corresponding to distinct structuration levels were prepared from a single technical lignin sample (PB1000): phenol-enriched oligomer fractions and colloidal nanoparticles (CLP). The raw lignin and its derivatives were formulated with cellulose nanocrystals or nanofibrils to prepare films by chemical oxidation or pressure-assisted filtration. The films were tested for their water and lignin retention capacities, radical scavenging capacity (RSC) and antimicrobial properties. A structural investigation was performed by infrared, electron paramagnetic resonance spectroscopy and microscopy. The composite morphology and performance were controlled by both the composition and structuration level of lignin. Phenol-enriched oligomers were the compounds most likely to interact with cellulose, leading to the smoothest film surface. Their RSC in film was 4- to 6-fold higher than that of the other samples. The organization in CLP led to the lowest RSC but showed capacity to trap and stabilize phenoxy radicals. All films were effective against S. aureus (gram negative) whatever the lignin structure. The results show the possibility to tune the performances of these composites by exploiting lignin multi-scale structure.Peer reviewe

    Fluorescent Gene Tagging of Transcriptionally Silent Genes in hiPSCs

    No full text
    Summary: We describe a multistep method for endogenous tagging of transcriptionally silent genes in human induced pluripotent stem cells (hiPSCs). A monomeric EGFP (mEGFP) fusion tag and a constitutively expressed mCherry fluorescence selection cassette were delivered in tandem via homology-directed repair to five genes not expressed in hiPSCs but important for cardiomyocyte sarcomere function: TTN, MYL7, MYL2, TNNI1, and ACTN2. CRISPR/Cas9 was used to deliver the selection cassette and subsequently mediate its excision via microhomology-mediated end-joining and non-homologous end-joining. Most excised clones were effectively tagged, and all properly tagged clones expressed the mEGFP fusion protein upon differentiation into cardiomyocytes, allowing live visualization of these cardiac proteins at the sarcomere. This methodology provides a broadly applicable strategy for endogenously tagging transcriptionally silent genes in hiPSCs, potentially enabling their systematic and dynamic study during differentiation and morphogenesis. : Gunawardane and colleagues use CRISPR/Cas9 to deliver an excisable cassette to transcriptionally silent loci in hiPSCs, then accomplish excision of the cassette in a second step utilizing Cas9/CRISPR and the MMEJ and NHEJ DNA-repair pathways. Excision results in mEGFP tagging of the targeted loci. Upon differentiation, each of five tagged cell lines appropriately expresses a unique fluorescent fusion protein localized to the sarcomere in live cardiomyocytes. Keywords: CRISPR/Cas9, genome editing, cardiomyocyte differentiation, stem cells, iPSCs, MMEJ, live imaging, endogenous fluorescent tagging, mEGFP, HD
    corecore