646 research outputs found

    The Copper Age in Northern Italy

    Get PDF
    During the period between the IVth and IIIrd millennia BC, profound changes for the ancient populations inhabiting the northern region of Italy occurred. The first Indo-European migrations were altering the ethnographic characteristics and, with the production of the first copper artifacts, the Neolithic Age was drawing to an end. The most significant testimony of that dramatic period is unquestionably the Ötztal iceman. In addition, many other valuable archaeological sites, such as Alba (Cuneo, Italy), have been discovered. Although Alba produced the oldest evidence of copper objects in a Neolithic context (5380 ± 40 BP; GX-25859-AMS), more recent discoveries have underlined the importance of this archaeological site. In this paper we will report on a series of radiocarbon measurements of bone remnants which, combined with morphologic, stratigraphic, paleoanthropologic, and paleopathologic studies, have allowed us to gain new insights into the culture and chronology of the European Copper Age

    Development and Validation of Web-based Courseware for Junior Secondary School Basic Technology Students in Nigeria

    Get PDF
    This research aimed to develop and validate a web-based courseware for junior secondary school basic technology students in Nigeria. In this study, a mixed method quantitative pilot study design with qualitative components was used to test and ascertain the ease of development and validation of the web-based courseware. Dick and Carey instructional system design model was adopted for developing the courseware. Convenience sampling technique was used in selecting the three content, computer and educational technology experts to validate the web-based courseware. Non-randomized and non-equivalent Junior secondary school students from two schools were used for field trial validation. Four validating instruments were employed in conducting this study: (i) Content Validation Assessment Report (CVAR); (ii) Computer Expert Validation Assessment Report (CEAR); (iii) Educational Technology Experts Validation Assessment Report (ETEVAR); and (iv) Students Validation Questionnaire (SVQ). All the instruments were face and content validated. SVQ was pilot tested and reliability coefficient of 0.85 was obtained using Cronbach Alpha. CVAR, CEAR, ETEVAR were administered on content specialists, computer experts, and educational technology experts, while SVQ was administered on 83 JSS students from two selected secondary schools in Minna. The findings revealed that the process of developing web-based courseware using Dick and Carey Instructional System Design was successful. In addition, the report from the validating team revealed that the web-based courseware is valuable for learning basic technology. It is therefore recommended that web-based courseware should be produced to teach basic technology concepts on large scale

    Development and Validation of Web-based Courseware for Junior Secondary School Basic Technology Students in Nigeria

    Full text link
    This research aimed to develop and validate a web-based courseware for junior secondary school basic technology students in Nigeria. In this study, a mixed method quantitative pilot study design with qualitative components was used to test and ascertain the ease of development and validation of the web-based courseware. Dick and Carey instructional system design model was adopted for developing the courseware. Convenience sampling technique was used in selecting the three content, computer and educational technology experts to validate the web-based courseware. Non-randomized and non-equivalent Junior secondary school students from two schools were used for field trial validation. Four validating instruments were employed in conducting this study: (i) Content Validation Assessment Report (CVAR); (ii) Computer Expert Validation Assessment Report (CEAR); (iii) Educational Technology Experts Validation Assessment Report (ETEVAR); and (iv) Students Validation Questionnaire (SVQ). All the instruments were face and content validated. SVQ was pilot tested and reliability coefficient of 0.85 was obtained using Cronbach Alpha. CVAR, CEAR, ETEVAR were administered on content specialists, computer experts, and educational technology experts, while SVQ was administered on 83 JSS students from two selected secondary schools in Minna. The findings revealed that the process of developing web-based courseware using Dick and Carey Instructional System Design was successful. In addition, the report from the validating team revealed that the web-based courseware is valuable for learning basic technology. It is therefore recommended that web-based courseware should be produced to teach basic technology concepts on large scale

    Tuning the Loading and Release Properties of MicroRNA-Silencing Porous Silicon Nanoparticles by Using Chemically Diverse Peptide Nucleic Acid Payloads

    Get PDF
    Peptide nucleic acids (PNAs) are a class of artificial oligonucleotide mimics that have garnered much attention as precision biotherapeutics for their efficient hybridization properties and their exceptional biological and chemical stability. However, the poor cellular uptake of PNA is a limiting factor to its more extensive use in biomedicine; encapsulation in nanoparticle carriers has therefore emerged as a strategy for internalization and delivery of PNA in cells. In this study, we demonstrate that PNA can be readily loaded into porous silicon nanoparticles (pSiNPs) following a simple salt-based trapping procedure thus far employed only for negatively charged synthetic oligonucleotides. We show that the ease and versatility of PNA chemistry also allows for producing PNAs with different net charge, from positive to negative, and that the use of differently charged PNAs enables optimization of loading into pSiNPs. Differently charged PNA payloads determine different release kinetics and allow modulation of the temporal profile of the delivery process. In vitro silencing of a set of specific microRNAs using a pSiNP-PNA delivery platform demonstrates the potential for biomedical applications

    Imaging in major salivary gland diseases

    Get PDF
    Most of the salivary glands diseases are characterized only by a few distinct clinical patterns. Medical history and clinical examination are still considered of great relevance. However, in order to obtaine a definite diagnosis, imaging techniques are required in most of the cases. Salivary glands ultrasonography (US) is the technique to be used as the first because US can easily differentiate calculosis, inflammatory diseases and tumors. Sonography is also frequently needed to perform needle aspiration or biopsy (FNAC). Sialography should be used essentially for assessing chronic sialoadenitis as well as Sjogren's syndrome. At present, Magnetic Resonance sialography should be preferred because of the greater sensibility in diagnosing inflammatory diseases of the salivary glands. It allows to evaluate both intraglandular oedema and nodules, so that incannulation of the salivary duct is not required. Computer Tomography (CT) and Magnetic Resonance imaging (MR) are useful when neoplasm are suspected, particularly if deep areas of the gland, which cannot be visualized by US, are involved. Sequential scintigraphy is currently employed for assessing the functional status of all the 4 major salivary glands and evaluating the chronic evolution of glandular damage

    Synthesis and anticancer activity of Pt(0)-olefin complexes bearing 1,3,5-triaza-7-phosphaadamantane and N-heterocyclic carbene ligands

    Get PDF
    A series of Pt(0)-η2-olefin complexes bearing 1,3,5-triaza-7-phosphaadamantane (PTA) or N-heterocyclic carbenes are prepared following different synthetic strategies depending on the nature of coordinated alkene and spectator ligands. These new platinum(0) derivatives have been tested in vitro as anticancer agents toward three different tumor (human ovarian cancer A2780 and A2780cis and K562 myelogenous leukemia) and one non-tumor (Hacat keratinocytes) cell lines, proving to be in several cases highly and selectively cytotoxic against ovarian cancer cells. Furthermore, this antiproliferative effect is associated with the activation of an apoptosis process. In particular, complexes equipped with PTA as spectator ligand give comparable IC50 values on A2780 (cisplatin sensitive) and A2780cis (cisplatin resistant) cell lines, indirectly proving that these new Pt(0) substrates act with a mechanism of action conceivably different from cisplatin. This hypothesis is also confirmed by the fact that our compounds, in contrast to cisplatin, are not able to promote erythroid-differentiation activity on the K562 myelogenous leukemia cell line

    Efficient Delivery of MicroRNA and AntimiRNA Molecules Using an Argininocalix[4]arene Macrocycle

    Get PDF
    MicroRNAs (miRNAs) are short non-coding RNA molecules acting as gene regulators by repressing translation or by inducing degradation of the target RNA transcripts. Altered expression of miRNAs may be involved in the pathogenesis of many severe human diseases, opening new avenues in the field of therapeutic strategies, i.e., miRNA targeting or miRNA mimicking. In this context, the efficient and non-toxic delivery of premiRNA and antimiRNA molecules might be of great interest. The aim of the present paper is to determine whether an argininocalix[4]arene is able to efficiently deliver miRNA, premiRNA, and antimiRNA molecules to target cells, preserving their biological activity. This study points out that (1) the toxicity of argininocalix[4]arene 1 is low, and it can be proposed for long-term treatment of target cells, being that this feature is a pre-requisite for the development of therapeutic protocols; (2) the delivery of premiRNA and antimiRNA molecules is efficient, being higher when compared with reference gold standards available; and (3) the biological activity of the premiRNAs and antimiRNAs is maintained. This was demonstrated using the argininocalix[4]arene 1 in miRNA therapeutic approaches performed on three well-described experimental model systems: (1) the induction of apoptosis by antimiR-221 in glioma U251 cells; (2) the induction of apoptosis by premiR-124 in U251 cells; and (3) the inhibition of pro-inflammatory IL-8 and IL-6 genes in cystic fibrosis IB3-1 cells. Our results demonstrate that the argininocalix[4]arene 1 should be considered a very useful delivery system for efficient transfer to target cells of both premiRNA and antimiRNA molecules, preserving their biological activity

    Gene Modulation by Peptide Nucleic Acids (PNAs) Targeting microRNAs (miRs)

    Get PDF
    Since non-viral gene therapy was developed and employed in different in vitro and in vivo experimental systems as an effective way to control and modify gene expression, RNA has been considered as a molecular target of great relevance (Li &Huang, 2008, López-Fraga et al., 2008). In combination with standard chemotherapy, the siRNA therapy can reduce the chemoresistance of certain cancers, demonstrating its potential for treating many malignant diseases. Examples of RNA sequences to be targeted for therapeutic applications are mRNAs coding oncoproteins or RNA coding anti-apoptotic proteins for the development of anti-cancer therapy. In the last years, progresses in molecular biology have allowed to identify many genes Coding for small non coding RNA molecules, microRNA (miRNAs or miRs), able to regulate gene expression at the translation level (Huang et al., 2008, Shrivastava & Shrivastava, 2008, Sahu et al. 2007, Orlacchio et al., 2007, Williams et al., 2008, Papagiannakopoulos & Kosik, 2008). Accordingly, an increasing number of reports associate the changed expression with specific phenotypes and even with pathological conditions (Garzon & Croce, 2008, Mascellani et al., 2008, Sontheimer & Carthew, 2005, Filipowicz et al., 2005, Alvarez-Garcia & Miska, 2005). Interestingly, microRNAs play a double role in cancer, behaving both as oncogenes or tumor suppressor genes. In general, miRs promoting cancer targets mRNA coding for tumor-suppression proteins, while microRNAs exhibiting tumor-suppression properties usually target mRNAs coding oncoproteins. MicroRNAs which have been demonstrated to play a crucial role in the initiation and progression of human cancer are defined as oncogenic miRNAs (oncomiRs) (Cho, 2007). The oncomiR expression profiling of human malignancies has also identified a number of diagnostic and prognostic cancer signals (Cho, 2007, Lowery et al., 2008). Moreover, microRNAs have been firmly demonstrated to be involved in cancer metastasis (metastamiRs). Examples of metastasis-promoting microRNAs are, miR-10b (Calin et al., 2006), miR-373 and - 520c (Woods et al., 2007), miR-21, -143 and -182 (Hayashita et al., 2005; Si et al., 2007; Zhu et al.,2007). Reviews on metastamiR has been recently published Hurst et al. (Hurst et al. 2009, Edmonds et al. 2009). Reviews on metastamiRs has been recently published by Hurst et al

    Increased frequency of activated CD8+ T cell effectors in patients with psoriatic arthritis

    Get PDF
    The aim of this study is to identify subsets of T cells differentially represented in the circulation of patients with psoriatic arthritis and to evaluate the possibility that they can recirculate between peripheral blood and the inflamed joints. We analyzed the phenotype and cytokine expression in circulating CD8+ and CD4+ T cells in 69 subjects: 28 with cutaneous psoriasis, 15 patients with psoriatic arthritis, and 26 healthy subjects. In the circulation, the percentage of each subset was compared among the groups and correlation was calculated with the serum concentration of C-reactive protein. To investigate the migration of T cells towards the inflamed joints, we performed a transwell migration assay towards patient serum and synovial fluid. In selected patients we analyzed in parallel T cells from peripheral blood and from synovial fluid. In the circulation, we found increased percentage of CD8+ CCR6+ T cell effectors expressing CD69 and of IL-17-producing T cells in patients with psoriatic arthritis. CD8+ effector/effector memory T cells showed increased migration towards synovial fluid. Finally, in synovial fluid we found accumulation of CXCR3+ CD8+ T cells and CD69+ cells. CD4+ T cells in the two compartments shared many similarities with CD8+ T cells. The results indicate a role for memory T cell effectors in systemic and joint manifestations of psoriatic arthritis

    A peptide-nucleic acid targeting miR-335-5p enhances expression of cystic fibrosis transmembrane conductance regulator (CFTR) gene with the possible involvement of the CFTR scaffolding protein NHERF1

    Get PDF
    (1) Background: Up-regulation of the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) might be of great relevance for the development of therapeutic protocols for cystic fibrosis (CF). MicroRNAs are deeply involved in the regulation of CFTR and scaffolding proteins (such as NHERF1, NHERF2 and Ezrin). (2) Methods: Content of miRNAs and mRNAs was analyzed by RT-qPCR, while the CFTR and NHERF1 production was analyzed by Western blotting. (3) Results: The results here described show that the CFTR scaffolding protein NHERF1 can be upregulated in bronchial epithelial Calu-3 cells by a peptide-nucleic acid (PNA) targeting miR-335-5p, predicted to bind to the 3′-UTR sequence of the NHERF1 mRNA. Treatment of Calu-3 cells with this PNA (R8-PNA-a335) causes also up-regulation of CFTR. (4) Conclusions: We propose miR-335-5p targeting as a strategy to increase CFTR. While the efficiency of PNA-based targeting of miR-3355p should be verified as a therapeutic strategy in CF caused by stop-codon mutation of the CFTR gene, this approach might give appreciable results in CF cells carrying other mutations impairing the processing or stability of CFTR protein, supporting its application in personalized therapy for precision medicine
    corecore