720 research outputs found

    Host galaxies of high-redshift quasars: SMBH growth and feedback

    Get PDF
    The properties of quasar-host galaxies might be determined by the growth and feedback of their supermassive black holes (SMBHs, 108-10 M⊙). We investigate such connection with a suite of cosmological simulations of massive (halo mass ≈1012 M⊙) galaxies at z ≃ 6 that include a detailed subgrid multiphase gas and accretion model. BH seeds of initial mass 105 M⊙ grow mostly by gas accretion, and become SMBH by z = 6 setting on the observed MBH-M∗ relation without the need for a boost factor. Although quasar feedback crucially controls the SMBH growth, its impact on the properties of the host galaxy at z = 6 is negligible. In our model, quasar activity can both quench (via gas heating) or enhance (by interstellar medium overpressurization) star formation. However, we find that the star formation history is insensitive to such modulation as it is largely dominated, at least at z > 6, by cold gas accretion from the environment that cannot be hindered by the quasar energy deposition. Although quasar-driven outflows can achieve velocities > 1000 km s-1, only ≈4 per cent of the outflowing gas mass can actually escape from the host galaxy. These findings are only loosely constrained by available data, but can guide observational campaigns searching for signatures of quasar feedback in early galaxies

    Massive black holes in high-redshift lyman break galaxies

    Get PDF
    Several evidences indicate that Lyman Break Galaxies (LBGs) in the Epoch of Reionization (redshift z > 6) might host massive black holes (MBHs). We address this question by using a merger-tree model combined with tight constraints from the 7 Ms Chandra survey and the known high-z super-MBH population. We find that a typical LBG with MUV = -22 residing in an Mh ≈ 1012 M halo at z = 6 host an MBH with mass M ≈ 2 × 108MDepending on the fraction, fseed, of early haloes planted with a direct collapse black hole seed (Mseed = 105M⊙the model suggests two possible scenarios: (i) if fseed = 1, MBHs in LBGs mostly grow by merging and must accrete at a low (λE 10-3) Eddington ratio not to exceed the experimental X-ray luminosity upper bound L∗X = 1042.5erg s-1; (ii) if fseed = 0.05, accretion dominates (λE 0.22) and MBH emission in LBGs must be heavily obscured. In both scenarios the UV luminosity function is largely dominated by stellar emission up to very bright mag,MUV >∼ - 23, with BH emission playing a subdominant role. Scenario (i) poses extremely challenging, and possibly unphysical, requirements on DCBH formation. Scenario (ii) entails testable implications on the physical properties of LBGs involving the FIR luminosity, emission lines, and the presence of outflows

    Kinematics of z6z\geq 6 galaxies from [CII] line emission

    Get PDF
    We study the kinematical properties of galaxies in the Epoch of Reionization via the [CII] 158μ\mum line emission. The line profile provides information on the kinematics as well as structural properties such as the presence of a disk and satellites. To understand how these properties are encoded in the line profile, first we develop analytical models from which we identify disk inclination and gas turbulent motions as the key parameters affecting the line profile. To gain further insights, we use "Althaea", a highly-resolved (30pc30\, \rm pc) simulated prototypical Lyman Break Galaxy, in the redshift range z=67z = 6-7, when the galaxy is in a very active assembling phase. Based on morphology, we select three main dynamical stages: I) Merger , II) Spiral Disk, and III) Disturbed Disk. We identify spectral signatures of merger events, spiral arms, and extra-planar flows in I), II), and III), respectively. We derive a generalised dynamical mass vs. [CII]-line FWHM relation. If precise information on the galaxy inclination is (not) available, the returned mass estimate is accurate within a factor 22 (44). A Tully-Fisher relation is found for the observed high-zz galaxies, i.e. L[CII](FWHM)1.80±0.35L_{\rm[CII]}\propto (FWHM)^{1.80\pm 0.35} for which we provide a simple, physically-based interpretation. Finally, we perform mock ALMA simulations to check the detectability of [CII]. When seen face-on, Althaea is always detected at >5σ> 5\sigma; in the edge-on case it remains undetected because the larger intrinsic FWHM pushes the line peak flux below detection limit. This suggests that some of the reported non-detections might be due to inclination effects.Comment: 14 pages, 12 figures, accepted for publication in MNRA

    Dust from AGBs: relevant factors and modelling uncertainties

    Get PDF
    The dust formation process in the winds of Asymptotic Giant Branch stars is discussed, based on full evolutionary models of stars with mass in the range 11M_{\odot} \leqM8\leq 8M_{\odot}, and metallicities 0.001<Z<0.0080.001 < Z <0.008. Dust grains are assumed to form in an isotropically expanding wind, by growth of pre--existing seed nuclei. Convection, for what concerns the treatment of convective borders and the efficiency of the schematization adopted, turns out to be the physical ingredient used to calculate the evolutionary sequences with the highest impact on the results obtained. Low--mass stars with M3\leq 3M_{\odot} produce carbon type dust with also traces of silicon carbide. The mass of solid carbon formed, fairly independently of metallicity, ranges from a few 10410^{-4}M_{\odot}, for stars of initial mass 11.51-1.5M_{\odot}, to 102\sim 10^{-2}M_{\odot} for M22.5\sim 2-2.5M_{\odot}; the size of dust particles is in the range 0.1μ0.1 \mumaC0.2μ\leq a_C \leq 0.2\mum. On the contrary, the production of silicon carbide (SiC) depends on metallicity. For 103Z8×10310^{-3} \leq Z \leq 8\times 10^{-3} the size of SiC grains varies in the range 0.05μm<aSiC<0.1μ0.05 \mu {\rm m} < {\rm a_{SiC}} < 0.1 \mum, while the mass of SiC formed is 105M<MSiC<103M10^{-5}{\rm M}_{\odot} < {\rm M_{SiC}} < 10^{-3}{\rm M}_{\odot}. Models of higher mass experience Hot Bottom Burning, which prevents the formation of carbon stars, and favours the formation of silicates and corundum. In this case the results scale with metallicity, owing to the larger silicon and aluminium contained in higher--Z models. At Z=8×1038\times 10^{-3} we find that the most massive stars produce dust masses md0.01m_d \sim 0.01M_{\odot}, whereas models of smaller mass produce a dust mass ten times smaller. The main component of dust are silicates, although corundum is also formed, in not negligible quantities (1020%\sim 10-20\%).Comment: Paper accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journal (2014 January 4

    Deep into the structure of the first galaxies: SERRA views

    Get PDF
    We study the formation and evolution of a sample of Lyman Break Galaxies in the Epoch of Reionization by using high-resolution (10pc\sim 10 \,{\rm pc}), cosmological zoom-in simulations part of the SERRA suite. In SERRA, we follow the interstellar medium (ISM) thermo-chemical non-equilibrium evolution, and perform on-the-fly radiative transfer of the interstellar radiation field (ISRF). The simulation outputs are post-processed to compute the emission of far infrared lines ([CII], [NII], and [OIII]). At z=8z=8, the most massive galaxy, `Freesia', has an age t409Myrt_\star \simeq 409\,{\rm Myr}, stellar mass M4.2×109MM_{\star} \simeq 4.2\times 10^9 {\rm M}_{\odot}, and a star formation rate SFR11.5Myr1{\rm SFR} \simeq 11.5\,{\rm M}_{\odot}{\rm yr}^{-1}, due to a recent burst. Freesia has two stellar components (A and B) separated by 2.5kpc\simeq 2.5\, {\rm kpc}; other 11 galaxies are found within 56.9±21.6kpc56.9 \pm 21.6 \, {\rm kpc}. The mean ISRF in the Habing band is G=7.9G0G = 7.9\, G_0 and is spatially uniform; in contrast, the ionisation parameter is U=22+20×103U = 2^{+20}_{-2} \times 10^{-3}, and has a patchy distribution peaked at the location of star-forming sites. The resulting ionising escape fraction from Freesia is fesc2%f_{\rm esc}\simeq 2\%. While [CII] emission is extended (radius 1.54 kpc), [OIII] is concentrated in Freesia-A (0.85 kpc), where the ratio Σ[OIII]/Σ[CII]10\Sigma_{\rm [OIII]}/\Sigma_{\rm [CII]} \simeq 10. As many high-zz galaxies, Freesia lies below the local [CII]-SFR relation. We show that this is the general consequence of a starburst phase (pushing the galaxy above the Kennicutt-Schmidt relation) which disrupts/photodissociates the emitting molecular clouds around star-forming sites. Metallicity has a sub-dominant impact on the amplitude of [CII]-SFR deviations.Comment: 22 pages, 14 figures, accepted by MNRA

    The rest-frame UV-to-optical spectroscopy of APM 08279+5255 - BAL classification and black hole mass estimates

    Get PDF
    We present the analysis of the rest-frame optical-to-UV spectrum of APM 08279+5255, a well-known lensed broad absorption line (BAL) quasar at z=3.911z = 3.911. The spectroscopic data are taken with the optical DOLoRes and near-IR NICS instruments at TNG, and include the previously unexplored range between C III] λ\lambda1910 and [O III] λλ\lambda\lambda4959,5007. We investigate the possible presence of multiple BALs by computing "balnicity" and absorption indexes (i.e. BI, BI0_0 and AI) for the transitions Si IV λ\lambda1400, C IV λ\lambda1549, Al III λ\lambda1860 and Mg II λ\lambda2800. No clear evidence for the presence of absorption features is found in addition to the already known, prominent BAL associated to C IV, which supports a high-ionization BAL classification for APM 08279+5255. We also study the properties of the [O III], Hβ\beta and Mg II emission lines. We find that [O III] is intrinsically weak (F[OIII]/FHβ0.04F_{\rm [OIII]}/F_{\rm H\beta} \lesssim 0.04), as it is typically found in luminous quasars with a strongly blueshifted C IV emission line (\sim2500 km s1^{-1} for APM 08279+5255). We compute the single-epoch black hole mass based on Mg II and Hβ\beta broad emission lines, finding MBH=(2÷3)×1010μ1M_{\rm BH} = (2 \div 3) \times 10^{10}\mu^{-1} M_\odot, with the magnification factor μ\mu that can vary between 4 and 100 according to CO and rest-frame UV-to-mid-IR imaging respectively. Using a Mg II equivalent width (EW)-to-Eddington ratio relation, the EWMgII27_{\rm MgII} \sim 27 \AA\ measured for APM 08279+5255 translates into an Eddington ratio of \sim0.4, which is more consistent with μ=4\mu=4. This magnification factor also provides a value of MBHM_{\rm BH} that is consistent with recent reverberation-mapping measurements derived from C IV and Si IV.Comment: 10 pages, 4 figures, 4 tables, accepted for publication in A&

    Early galaxy growth: mergers or gravitational instability?

    Full text link
    We investigate the spatially-resolved morphology of galaxies in the early Universe. We consider a typical redshift z = 6 Lyman Break galaxy, "Althaea" from the SERRA hydrodynamical simulations. We create mock rest-frame ultraviolet, optical, and far-infrared observations, and perform a two-dimensional morphological analysis to de-blend the galaxy disk from substructures (merging satellites or star-forming regions). We find that the [CII]158um emitting region has an effective radius 1.5 - 2.5 times larger than the optical one, consistent with recent observations. This [CII] halo in our simulated galaxy arises as the joint effect of stellar outflows and carbon photoionization by the galaxy UV field, rather than from the emission of unresolved nearby satellites. At the typical angular resolution of current observations (> 0.15") only merging satellites can be detected; detection of star-forming regions requires resolutions of < 0.05". The [CII]-detected satellite has a 2.5 kpc projected distance from the galaxy disk, whereas the star-forming regions are embedded in the disk itself (distance < 1 kpc). This suggests that multi-component systems reported in the literature, which have separations > 2 kpc, are merging satellites, rather than galactic substructures. Finally, the star-forming regions found in our mock maps follow the local L[CII] - SFR_UV relation of galaxy disks, although sampling the low-luminosity, low-SFR tail of the distribution. We show that future JWST observations, bridging UV and [CII] datasets, will be exceptionally suited to characterize galaxy substructures thanks to their exquisite spatial resolution and sensitivity to both low-metallicity and dust-obscured regions that are bright at infrared wavelengths.Comment: Accepted for publication in MNRAS; 17 pages (plus appendix), 7 figures, 4 table

    Impressive long-term response with chemo-endocrine therapy in a premenopausal patient with metastatic breast cancer: A case report

    Get PDF
    RATIONALE: Patients with, or who develop, metastatic breast cancer have a 5-year relative survival of about 25%. Endocrine therapy clearly improves outcomes in patients with estrogen receptor-positive breast cancer. In the metastatic setting, the primary goal of treatment is to maintain long-term disease control with good quality of life. Rarely, exceptional responders achieve durable disease control, and potential cures cannot be ruled out. PATIENT CONCERNS: We report the case of a 39-year-old woman with primary breast cancer and associated synchronous bone metastases, who experienced a disease response of 12 years with hormonal therapy as maintenance after first line chemotherapy, with a good toxicity profile. DIAGNOSIS: The patient was diagnosed with estrogen receptor + human epidermal growth factor receptor 2 (HER2)- metastatic breast cancer with synchronous bone metastases. INTERVENTIONS: This patient was treated with chemotherapy for 6 cycles as a first-line therapy following by endocrine treatment given as a maintenance therapy. OUTCOMES: Our patient experienced a progression-free survival &gt;12 years with an exceptionally good quality of life. LESSONS: Our anecdotal experience highlights the existence of exceptional responders among patients with hormone receptor-positive metastatic breast cancer, who achieve clinical remission and durable disease control with endocrine therapy. Being able to identify these patients could help in the selection of the best treatment option among the many available

    The assembly of "normal" galaxies at z=7 probed by ALMA

    Get PDF
    We report new deep ALMA observations aimed at investigating the [CII]158um line and continuum emission in three spectroscopically confirmed Lyman Break Galaxies at 6.8<z<7.1, i.e. well within the re-ionization epoch. With Star Formation Rates of SFR ~ 5-15 Msun/yr these systems are much more representative of the high-z galaxy population than other systems targeted in the past by millimeter observations. For the galaxy with the deepest observation we detect [CII] emission at redshift z=7.107, fully consistent with the Lyalpha redshift, but spatially offset by 0.7" (4 kpc) from the optical emission. At the location of the optical emission, tracing both the Lyalpha line and the far-UV continuum, no [CII] emission is detected in any of the three galaxies, with 3sigma upper limits significantly lower than the [CII] emission observed in lower reshift galaxies. These results suggest that molecular clouds in the central parts of primordial galaxies are rapidly disrupted by stellar feedback. As a result, [CII] emission mostly arises from more external accreting/satellite clumps of neutral gas. These findings are in agreement with recent models of galaxy formation. Thermal far-infrared continuum is not detected in any of the three galaxies. However, the upper limits on the infrared-to-UV emission ratio do not exceed those derived in metal- and dust-poor galaxies.Comment: 15 pages, 9 figures, MNRAS in press, replaced with accepted versio
    corecore