13 research outputs found

    Rehydration Properties of Whey Protein Isolate Powders Containing Nanoparticulated Proteins

    Get PDF
    peer-reviewedThe rehydration properties of original whey protein isolate (WPIC) powder and spray-dried WPI prepared from either unheated (WPIUH) or nanoparticulated WPI solutions were investigated. Nanoparticulation of whey proteins was achieved by subjecting reconstituted WPIC solutions (10% protein, w/w, pH 7.0) to heat treatment at 90 °C for 30 s with no added calcium (WPIH) or with 2.5 mM added calcium (WPIHCa). Powder surface nanostructure and elemental composition were investigated using atomic force microscopy and X-ray photoelectron spectroscopy, followed by dynamic visualisation of wetting and dissolution characteristics using environmental scanning electron microscopy. The surface of powder particles for both WPIUH and WPIC samples generally appeared smooth, while WPIH and WPIHCa displayed micro-wrinkles with more significant deposition of nitrogen and calcium elements. WPIH and WPIHCa exhibited lower wettability and solubility performance than WPIUH and WPIC during microscopic observation. This study demonstrated that heat-induced aggregation of whey proteins, in the presence or absence of added calcium, before drying increases aggregate size, alters the powder surface properties, consequently impairing their wetting characteristics. This study also developed a fundamental understanding of WPI powder obtained from nanoparticulated whey proteins, which could be applied for the development of functional whey-based ingredients in food formulations, such as nanospacers to modulate protein–protein interactions in dairy concentrates.Food Institutional Research Measur

    Exploiting a Rose Bengal-bearing, oxygen-producing nanoparticle for SDT and associated immune-mediated therapeutic effects in the treatment of pancreatic cancer

    Get PDF
    Sonodynamic therapy (SDT) is an emerging stimulus-responsive approach for the targeted treatment of solid tumours. However, its ability to generate stimulus-responsive cytotoxic reactive oxygen species (ROS), is compromised by tumour hypoxia. Here we describe a robust means of preparing a pH-sensitive polymethacrylate-coated CaO2 nanoparticle that is capable of transiently alleviating tumour hypoxia. Systemic administration of particles to animals bearing human xenograft BxPC3 pancreatic tumours increases oxygen partial pressures (PO2) to 20 - 50 mmHg for over 40 min. RT-qPCR analysis of expression of selected tumour marker genes in treated animals suggests that the transient production of oxygen is sufficient to elicit effects at a molecular genetic level. Using particles labelled with the near infra-red (nIR) fluorescent dye, indocyanine green, selective uptake of particles by tumours was observed. Systemic administration of particles containing Rose Bengal (RB) at concentrations of 0.1 mg/mg of particles are capable of eliciting nanoparticle-induced, SDT-mediated antitumour effects using the BxPC3 human pancreatic tumour model in immuno-compromised mice. Additionally, a potent abscopal effect was observed in off-target tumours in a syngeneic murine bilateral tumour model for pancreatic cancer and an increase in tumour cytotoxic T cells (CD8+) and a decrease in immunosuppressive tumour regulatory T cells [Treg (CD4+, FoxP3+)] was observed in both target and off-target tumours in SDT treated animals. We suggest that this approach offers significant potential in the treatment of both focal and disseminated (metastatic) pancreatic cancer

    Efficient discovery of anti-inflammatory small-molecule combinations using evolutionary computing

    Get PDF
    The control of biochemical fluxes is distributed, and to perturb complex intracellular networks effectively it is often necessary to modulate several steps simultaneously. However, the number of possible permutations leads to a combinatorial explosion in the number of experiments that would have to be performed in a complete analysis. We used a multiobjective evolutionary algorithm to optimize reagent combinations from a dynamic chemical library of 33 compounds with established or predicted targets in the regulatory network controlling IL-1β expression. The evolutionary algorithm converged on excellent solutions within 11 generations, during which we studied just 550 combinations out of the potential search space of ~9 billion. The top five reagents with the greatest contribution to combinatorial effects throughout the evolutionary algorithm were then optimized pairwise. A p38 MAPK inhibitor together with either an inhibitor of IκB kinase or a chelator of poorly liganded iron yielded synergistic inhibition of macrophage IL-1β expression. Evolutionary searches provide a powerful and general approach to the discovery of new combinations of pharmacological agents with therapeutic indices potentially greater than those of single drugs

    CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice

    Get PDF
    Neuroinflammation and microglial activation are significant processes in Alzheimer’s disease pathology. Recent genome-wide association studies have highlighted multiple immune-related genes in association with Alzheimer’s disease, and experimental data have demonstrated microglial proliferation as a significant component of the neuropathology. In this study, we tested the efficacy of the selective CSF1R inhibitor JNJ-40346527 (JNJ-527) in the P301S mouse tauopathy model. We first demonstrated the anti-proliferative effects of JNJ-527 on microglia in the ME7 prion model, and its impact on the inflammatory profile, and provided potential CNS biomarkers for clinical investigation with the compound, including pharmacokinetic/pharmacodynamics and efficacy assessment by TSPO autoradiography and CSF proteomics. Then, we showed for the first time that blockade of microglial proliferation and modification of microglial phenotype leads to an attenuation of tau-induced neurodegeneration and results in functional improvement in P301S mice. Overall, this work strongly supports the potential for inhibition of CSF1R as a target for the treatment of Alzheimer’s disease and other tau-mediated neurodegenerative diseases

    Inflammatory biomarkers in Alzheimer's disease plasma

    Get PDF
    Introduction:Plasma biomarkers for Alzheimer’s disease (AD) diagnosis/stratification are a“Holy Grail” of AD research and intensively sought; however, there are no well-established plasmamarkers.Methods:A hypothesis-led plasma biomarker search was conducted in the context of internationalmulticenter studies. The discovery phase measured 53 inflammatory proteins in elderly control (CTL;259), mild cognitive impairment (MCI; 199), and AD (262) subjects from AddNeuroMed.Results:Ten analytes showed significant intergroup differences. Logistic regression identified five(FB, FH, sCR1, MCP-1, eotaxin-1) that, age/APOε4 adjusted, optimally differentiated AD andCTL (AUC: 0.79), and three (sCR1, MCP-1, eotaxin-1) that optimally differentiated AD and MCI(AUC: 0.74). These models replicated in an independent cohort (EMIF; AUC 0.81 and 0.67). Twoanalytes (FB, FH) plus age predicted MCI progression to AD (AUC: 0.71).Discussion:Plasma markers of inflammation and complement dysregulation support diagnosis andoutcome prediction in AD and MCI. Further replication is needed before clinical translatio

    Pilot-scale production and physicochemical characterisation of spray-dried nanoparticulated whey protein powders

    Get PDF
    Spray-dried whey protein isolate (WPI) powders were prepared at pilot-scale from solutions without heat (WPIUH), heated (WPIH) or heated with calcium (WPIHCa), which were analysed and compared with a control sample (WPIC). WPIC, WPIUH, WPIH and WPIHCa solutions had whey protein denaturation levels of 0.0, 3.2, 64.4 and 74.4%, respectively. Computerised tomography scanning showed that 52.6, 84.0, 74.5 and 41.9% of WPIC, WPIUH, WPIH and WPIHCa powder particles had diameters of ≤30 µm. WPIHCa and WPIH powders were cohesive, while WPIC and WPIUH powders were easy flowing. Marked differences in microstructure were observed between WPIH and WPIHCa. There were no measured differences in wall friction, bulk density or colour

    Inflammatory biomarkers in Alzheimer's disease plasma

    Get PDF
    Plasma biomarkers for Alzheimer's disease (AD) diagnosis/stratification are a "Holy Grail" of AD research and intensively sought; however, there are no well-established plasma markers. A hypothesis-led plasma biomarker search was conducted in the context of international multicenter studies. The discovery phase measured 53 inflammatory proteins in elderly control (CTL; 259), mild cognitive impairment (MCI; 199), and AD (262) subjects from AddNeuroMed. Ten analytes showed significant intergroup differences. Logistic regression identified five (FB, FH, sCR1, MCP-1, eotaxin-1) that, age/APOε4 adjusted, optimally differentiated AD and CTL (AUC: 0.79), and three (sCR1, MCP-1, eotaxin-1) that optimally differentiated AD and MCI (AUC: 0.74). These models replicated in an independent cohort (EMIF; AUC 0.81 and 0.67). Two analytes (FB, FH) plus age predicted MCI progression to AD (AUC: 0.71). Plasma markers of inflammation and complement dysregulation support diagnosis and outcome prediction in AD and MCI. Further replication is needed before clinical translation

    Mapping soil transmitted helminths and schistosomiasis under uncertainty: a systematic review and critical appraisal of evidence

    Get PDF
    Spatial modelling of STH and schistosomiasis epidemiology is now commonplace. Spatial epidemiological studies help inform decisions regarding the number of people at risk as well as the geographic areas that need to be targeted with mass drug administration; however, limited attention has been given to propagated uncertainties, their interpretation, and consequences for the mapped values. Using currently published literature on the spatial epidemiology of helminth infections we identified: (1) the main uncertainty sources, their definition and quantification and (2) how uncertainty is informative for STH programme managers and scientists working in this domain.We performed a systematic literature search using the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) protocol. We searched Web of Knowledge and PubMed using a combination of uncertainty, geographic and disease terms. A total of 73 papers fulfilled the inclusion criteria for the systematic review. Only 9% of the studies did not address any element of uncertainty, while 91% of studies quantified uncertainty in the predicted morbidity indicators and 23% of studies mapped it. In addition, 57% of the studies quantified uncertainty in the regression coefficients but only 7% incorporated it in the regression response variable (morbidity indicator). Fifty percent of the studies discussed uncertainty in the covariates but did not quantify it. Uncertainty was mostly defined as precision, and quantified using credible intervals by means of Bayesian approaches.None of the studies considered adequately all sources of uncertainties. We highlighted the need for uncertainty in the morbidity indicator and predictor variable to be incorporated into the modelling framework. Study design and spatial support require further attention and uncertainty associated with Earth observation data should be quantified. Finally, more attention should be given to mapping and interpreting uncertainty, since they are relevant to inform decisions regarding the number of people at risk as well as the geographic areas that need to be targeted with mass drug administration
    corecore