9,362 research outputs found

    Collisional excitation of water by hydrogen atoms

    Full text link
    We present quantum dynamical calculations that describe the rotational excitation of H2_2O due to collisions with H atoms. We used a recent, high accuracy potential energy surface, and solved the collisional dynamics with the close-coupling formalism, for total energies up to 12 000 cm−1^{-1}. From these calculations, we obtained collisional rate coefficients for the first 45 energy levels of both ortho- and para-H2_2O and for temperatures in the range T = 5-1500 K. These rate coefficients are subsequently compared to the values previously published for the H2_2O / He and H2_2O / H2_2 collisional systems. It is shown that no simple relation exists between the three systems and that specific calculations are thus mandatory

    High Repetition-Rate Wakefield Electron Source Generated by Few-millijoule, 30 femtosecond Laser Pulses on a Density Downramp

    Full text link
    We report on an experimental demonstration of laser wakefield electron acceleration using a sub-TW power laser by tightly focusing 30-fs laser pulses with only 8 mJ pulse energy on a 100 \mu m scale gas target. The experiments are carried out at an unprecedented 0.5 kHz repetition rate, allowing "real time" optimization of accelerator parameters. Well-collimated and stable electron beams with a quasi-monoenergetic peak in excess of 100 keV are measured. Particle-in-cell simulations show excellent agreement with the experimental results and suggest an acceleration mechanism based on electron trapping on the density downramp, due to the time varying phase velocity of the plasma waves.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Two-Qubit Separability Probabilities and Beta Functions

    Get PDF
    Due to recent important work of Zyczkowski and Sommers (quant-ph/0302197 and quant-ph/0304041), exact formulas are available (both in terms of the Hilbert-Schmidt and Bures metrics) for the (n^2-1)-dimensional and (n(n-1)/2-1)-dimensional volumes of the complex and real n x n density matrices. However, no comparable formulas are available for the volumes (and, hence, probabilities) of various separable subsets of them. We seek to clarify this situation for the Hilbert-Schmidt metric for the simplest possible case of n=4, that is, the two-qubit systems. Making use of the density matrix (rho) parameterization of Bloore (J. Phys. A 9, 2059 [1976]), we are able to reduce each of the real and complex volume problems to the calculation of a one-dimensional integral, the single relevant variable being a certain ratio of diagonal entries, nu = (rho_{11} rho_{44})/{rho_{22} rho_{33})$. The associated integrand in each case is the product of a known (highly oscillatory near nu=1) jacobian and a certain unknown univariate function, which our extensive numerical (quasi-Monte Carlo) computations indicate is very closely proportional to an (incomplete) beta function B_{nu}(a,b), with a=1/2, b=sqrt{3}in the real case, and a=2 sqrt{6}/5, b =3/sqrt{2} in the complex case. Assuming the full applicability of these specific incomplete beta functions, we undertake separable volume calculations.Comment: 17 pages, 4 figures, paper is substantially rewritten and reorganized, with the quasi-Monte Carlo integration sample size being greatly increase

    The mutational landscape of a prion-like domain

    Get PDF
    Insoluble protein aggregates are the hallmarks of many neurodegenerative diseases. For example, aggregates of TDP-43 occur in nearly all cases of amyotrophic lateral sclerosis (ALS). However, whether aggregates cause cellular toxicity is still not clear, even in simpler cellular systems. We reasoned that deep mutagenesis might be a powerful approach to disentangle the relationship between aggregation and toxicity. We generated >50,000 mutations in the prion-like domain (PRD) of TDP-43 and quantified their toxicity in yeast cells. Surprisingly, mutations that increase hydrophobicity and aggregation strongly decrease toxicity. In contrast, toxic variants promote the formation of dynamic liquid-like condensates. Mutations have their strongest effects in a hotspot that genetic interactions reveal to be structured in vivo, illustrating how mutagenesis can probe the in vivo structures of unstructured proteins. Our results show that aggregation of TDP-43 is not harmful but protects cells, most likely by titrating the protein away from a toxic liquid-like phase

    South America: a reservoir of continental carbon - first estimate of changes since 18,000 yr BP

    Get PDF
    By using geographic and palaeogeographic sketches established for the present situation (before recent deforestation) and for the glacial maximum (about 15,000-18,000 BP) we can estimate the possible total biomass (phytomass) of the South American continent. According to the biomass density used in this first estimate for ten major ecosystems, the results show a possible increase from 140 Gt of carbon (glacial maximum) to 214 Gt C (preindustrial) for the phytomass, and 120 to 180 Gt C for the soils. These preliminary results are possibly only a 60 or 70 percent approximate estimate and could be modified with computation using other palaeogeographic models or another biomass density. It is therefore to underline the urgent need of more field biomass measurements, ecosystems mappings, and palaeostudies to evaluate the part of South America as a future possible sink for the atmospheric carbon dioxide. The Amazonian forest makes of South America an important continental reservoir of carbon for the planet Earth. This continent represents consequently a key zone for the research and knowledge of changes in the biogeochemical cycle of carbon. In order to evaluate more precisely the role it plays we estimated the approximate quantities of carbon in the total phytomass and the carbon in soils for each of the ecosystems represented in Figure 1, both for Present and Last Glacial Maximum landscapes

    Band Distributions for Quantum Chaos on the Torus

    Get PDF
    Band distributions (BDs) are introduced describing quantization in a toral phase space. A BD is the uniform average of an eigenstate phase-space probability distribution over a band of toral boundary conditions. A general explicit expression for the Wigner BD is obtained. It is shown that the Wigner functions for {\em all} of the band eigenstates can be reproduced from the Wigner BD. Also, BDs are shown to be closer to classical distributions than eigenstate distributions. Generalized BDs, associated with sets of adjacent bands, are used to extend in a natural way the Chern-index characterization of the classical-quantum correspondence on the torus to arbitrary rational values of the scaled Planck constant.Comment: 12 REVTEX page

    Zeeman slowers made simple with permanent magnets in a Halbach configuration

    Full text link
    We describe a simple Zeeman slower design using permanent magnets. Contrary to common wire-wound setups no electric power and water cooling are required. In addition, the whole system can be assembled and disassembled at will. The magnetic field is however transverse to the atomic motion and an extra repumper laser is necessary. A Halbach configuration of the magnets produces a high quality magnetic field and no further adjustment is needed. After optimization of the laser parameters, the apparatus produces an intense beam of slow and cold 87Rb atoms. With a typical flux of 1 - 5 \times 10^10 atoms/s at 30 ms^-1, our apparatus efficiently loads a large magneto-optical trap with more than 10^10 atoms in one second, which is an ideal starting point for degenerate quantum gases experiments.Comment: 8+6 pages (article + appendices: calculation details, probe and oven description, pictures), 18 figures, supplementary material (movie, Mathematica programs and technical drawings

    Probing the Slope of Cluster Mass Profile with Gravitational Einstein Rings: Application to Abell 1689

    Get PDF
    The strong lensing modelling of gravitational ``rings'' formed around massive galaxies is sensitive to the amplitude of the external shear and convergence produced by nearby mass condensations. In current wide field surveys, it is now possible to find out a large number of rings, typically 10 gravitational rings per square degree. We propose here, to systematically study gravitational rings around galaxy clusters to probe the cluster mass profile beyond the cluster strong lensing regions. For cluster of galaxies with multiple arc systems, we show that rings found at various distances from the cluster centre can improve the modelling by constraining the slope of the cluster mass profile. We outline the principle of the method with simple numerical simulations and we apply it to 3 rings discovered recently in Abell~1689. In particular, the lens modelling of the 3 rings confirms that the cluster is bimodal, and favours a slope of the mass profile steeper than isothermal at a cluster radius \sim 300 \kpc. These results are compared with previous lens modelling of Abell~1689 including weak lensing analysis. Because of the difficulty arising from the complex mass distribution in Abell~1689, we argue that the ring method will be better implemented on simpler and relaxed clusters.Comment: Accepted for publication in MNRAS. Substantial modification after referee's repor
    • 

    corecore