9,931 research outputs found
Collisional excitation of water by hydrogen atoms
We present quantum dynamical calculations that describe the rotational
excitation of HO due to collisions with H atoms. We used a recent, high
accuracy potential energy surface, and solved the collisional dynamics with the
close-coupling formalism, for total energies up to 12 000 cm. From these
calculations, we obtained collisional rate coefficients for the first 45 energy
levels of both ortho- and para-HO and for temperatures in the range T =
5-1500 K. These rate coefficients are subsequently compared to the values
previously published for the HO / He and HO / H collisional
systems. It is shown that no simple relation exists between the three systems
and that specific calculations are thus mandatory
High Repetition-Rate Wakefield Electron Source Generated by Few-millijoule, 30 femtosecond Laser Pulses on a Density Downramp
We report on an experimental demonstration of laser wakefield electron
acceleration using a sub-TW power laser by tightly focusing 30-fs laser pulses
with only 8 mJ pulse energy on a 100 \mu m scale gas target. The experiments
are carried out at an unprecedented 0.5 kHz repetition rate, allowing "real
time" optimization of accelerator parameters. Well-collimated and stable
electron beams with a quasi-monoenergetic peak in excess of 100 keV are
measured. Particle-in-cell simulations show excellent agreement with the
experimental results and suggest an acceleration mechanism based on electron
trapping on the density downramp, due to the time varying phase velocity of the
plasma waves.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
Two-Qubit Separability Probabilities and Beta Functions
Due to recent important work of Zyczkowski and Sommers (quant-ph/0302197 and
quant-ph/0304041), exact formulas are available (both in terms of the
Hilbert-Schmidt and Bures metrics) for the (n^2-1)-dimensional and
(n(n-1)/2-1)-dimensional volumes of the complex and real n x n density
matrices. However, no comparable formulas are available for the volumes (and,
hence, probabilities) of various separable subsets of them. We seek to clarify
this situation for the Hilbert-Schmidt metric for the simplest possible case of
n=4, that is, the two-qubit systems. Making use of the density matrix (rho)
parameterization of Bloore (J. Phys. A 9, 2059 [1976]), we are able to reduce
each of the real and complex volume problems to the calculation of a
one-dimensional integral, the single relevant variable being a certain ratio of
diagonal entries, nu = (rho_{11} rho_{44})/{rho_{22} rho_{33})$. The associated
integrand in each case is the product of a known (highly oscillatory near nu=1)
jacobian and a certain unknown univariate function, which our extensive
numerical (quasi-Monte Carlo) computations indicate is very closely
proportional to an (incomplete) beta function B_{nu}(a,b), with a=1/2,
b=sqrt{3}in the real case, and a=2 sqrt{6}/5, b =3/sqrt{2} in the complex case.
Assuming the full applicability of these specific incomplete beta functions, we
undertake separable volume calculations.Comment: 17 pages, 4 figures, paper is substantially rewritten and
reorganized, with the quasi-Monte Carlo integration sample size being greatly
increase
The mutational landscape of a prion-like domain
Insoluble protein aggregates are the hallmarks of many neurodegenerative diseases. For example, aggregates of TDP-43 occur in nearly all cases of amyotrophic lateral sclerosis (ALS). However, whether aggregates cause cellular toxicity is still not clear, even in simpler cellular systems. We reasoned that deep mutagenesis might be a powerful approach to disentangle the relationship between aggregation and toxicity. We generated >50,000 mutations in the prion-like domain (PRD) of TDP-43 and quantified their toxicity in yeast cells. Surprisingly, mutations that increase hydrophobicity and aggregation strongly decrease toxicity. In contrast, toxic variants promote the formation of dynamic liquid-like condensates. Mutations have their strongest effects in a hotspot that genetic interactions reveal to be structured in vivo, illustrating how mutagenesis can probe the in vivo structures of unstructured proteins. Our results show that aggregation of TDP-43 is not harmful but protects cells, most likely by titrating the protein away from a toxic liquid-like phase
South America: a reservoir of continental carbon - first estimate of changes since 18,000 yr BP
By using geographic and palaeogeographic sketches established for the present situation (before recent deforestation) and for the glacial maximum (about 15,000-18,000 BP) we can estimate the possible total biomass (phytomass) of the South American continent. According to the biomass density used in this first estimate for ten major ecosystems, the results show a possible increase from 140 Gt of carbon (glacial maximum) to 214 Gt C (preindustrial) for the phytomass, and 120 to 180 Gt C for the soils. These preliminary results are possibly only a 60 or 70 percent approximate estimate and could be modified with computation using other palaeogeographic models or another biomass density. It is therefore to underline the urgent need of more field biomass measurements, ecosystems mappings, and palaeostudies to evaluate the part of South America as a future possible sink for the atmospheric carbon dioxide. The Amazonian forest makes of South America an important continental reservoir of carbon for the planet Earth. This continent represents consequently a key zone for the research and knowledge of changes in the biogeochemical cycle of carbon. In order to evaluate more precisely the role it plays we estimated the approximate quantities of carbon in the total phytomass and the carbon in soils for each of the ecosystems represented in Figure 1, both for Present and Last Glacial Maximum landscapes
Band Distributions for Quantum Chaos on the Torus
Band distributions (BDs) are introduced describing quantization in a toral
phase space. A BD is the uniform average of an eigenstate phase-space
probability distribution over a band of toral boundary conditions. A general
explicit expression for the Wigner BD is obtained. It is shown that the Wigner
functions for {\em all} of the band eigenstates can be reproduced from the
Wigner BD. Also, BDs are shown to be closer to classical distributions than
eigenstate distributions. Generalized BDs, associated with sets of adjacent
bands, are used to extend in a natural way the Chern-index characterization of
the classical-quantum correspondence on the torus to arbitrary rational values
of the scaled Planck constant.Comment: 12 REVTEX page
Probing the Slope of Cluster Mass Profile with Gravitational Einstein Rings: Application to Abell 1689
The strong lensing modelling of gravitational ``rings'' formed around massive
galaxies is sensitive to the amplitude of the external shear and convergence
produced by nearby mass condensations. In current wide field surveys, it is now
possible to find out a large number of rings, typically 10 gravitational rings
per square degree. We propose here, to systematically study gravitational rings
around galaxy clusters to probe the cluster mass profile beyond the cluster
strong lensing regions. For cluster of galaxies with multiple arc systems, we
show that rings found at various distances from the cluster centre can improve
the modelling by constraining the slope of the cluster mass profile. We outline
the principle of the method with simple numerical simulations and we apply it
to 3 rings discovered recently in Abell~1689. In particular, the lens modelling
of the 3 rings confirms that the cluster is bimodal, and favours a slope of the
mass profile steeper than isothermal at a cluster radius \sim 300 \kpc. These
results are compared with previous lens modelling of Abell~1689 including weak
lensing analysis. Because of the difficulty arising from the complex mass
distribution in Abell~1689, we argue that the ring method will be better
implemented on simpler and relaxed clusters.Comment: Accepted for publication in MNRAS. Substantial modification after
referee's repor
Zeeman slowers made simple with permanent magnets in a Halbach configuration
We describe a simple Zeeman slower design using permanent magnets. Contrary
to common wire-wound setups no electric power and water cooling are required.
In addition, the whole system can be assembled and disassembled at will. The
magnetic field is however transverse to the atomic motion and an extra repumper
laser is necessary. A Halbach configuration of the magnets produces a high
quality magnetic field and no further adjustment is needed. After optimization
of the laser parameters, the apparatus produces an intense beam of slow and
cold 87Rb atoms. With a typical flux of 1 - 5 \times 10^10 atoms/s at 30 ms^-1,
our apparatus efficiently loads a large magneto-optical trap with more than
10^10 atoms in one second, which is an ideal starting point for degenerate
quantum gases experiments.Comment: 8+6 pages (article + appendices: calculation details, probe and oven
description, pictures), 18 figures, supplementary material (movie,
Mathematica programs and technical drawings
- âŠ