4,324 research outputs found
Research and development at ORNL/CESAR towards cooperating robotic systems for hazardous environments
One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of position and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace
Mobilizing agro-biodiversity and social networks to cope with adverse effects of climate and social changes: experiences from Kitui, Kenya
Poster presented at 13th Congress of the International Society of Ethnobiology. Montpellier (France), 20-25 May 201
Recommended from our members
Derivation of globally averaged lunar heat flow from the local heat flow values and the Thorium distribution at the surface: expected improvement by the LUNAR-A Mission
The relationship between the Th abundance and the heat flow data of the Apollo sites and the LUANR-A sites, where the Th concentrations are in the wide range from 1 ppm to 6 ppm, will allow for a more precise estimation of the averaged heat flow value
Recommended from our members
In situ lunar heat flow experiment using the LUNAR-A penetrator
An in situ lunar heat flow measurement is planned using the Japanese Lunar-A penetrators. The temperature gradient of the regolith is expected to be obtained within 12% error
Recommended from our members
Thermal in situ measurements in the Lunar Regolith using the LUNAR-A penetrators: an outline of data reduction methods
For determining the lunar heat flow two parameters need to be measured: The thermal gradient and the thermal conductivity of the regolith. Methods for inferring these quantities from in situ measurements using the LUNAR-A penetrators will be presented
Localized transverse bursts in inclined layer convection
We investigate a novel bursting state in inclined layer thermal convection in
which convection rolls exhibit intermittent, localized, transverse bursts. With
increasing temperature difference, the bursts increase in duration and number
while exhibiting a characteristic wavenumber, magnitude, and size. We propose a
mechanism which describes the duration of the observed bursting intervals and
compare our results to bursting processes in other systems.Comment: 4 pages, 8 figure
Fungicide resistance among Cladobotryum spp. – causal agents of cobweb disease of the edible mushroom Agaricus bisporus
A survey of fungicide resistance among isolates of the mushroom pathogens Cladobotryum mycophilum and C. dendroides Types I and II was undertaken, with respect to the active ingredients thiabendazole, carbendazim (benzimidazoles) and prochloraz manganese following an epidemic in Britain and Ireland in 1994/95. The majority of isolates (41/57) were strongly resistant to thiabendazole (ED50 > 200 ppm) and were exclusively C. dendroides Type II. All C. mycophilum and C. dendroides Type I isolates, and four C. dendroides Type II isolates, were weakly resistant to thiabendazole (ED50 1–10 ppm). Thiabendazole-resistant C. dendroides Type II isolates were only weakly resistant to carbendazim (ED50 2–10 ppm) and isolates which were weakly resistant to thiabendazole were carbendazim-sensitive (ED50 < 1 ppm), demonstrating a lack of complete cross resistance between these two benzimidazole fungicides. The ED50 values for all isolates with respect to prochloraz manganese ranged from 0.14 to 7.8 ppm. Benzimidazole resistance was considered to have been an important factor influencing the severity of the 1994/95 cobweb epidemic but 25% of isolates collected were benzimidazole sensitive
Longitudinal oscillations in density stratified and expanding solar waveguides
Waves and oscillations can provide vital information about the internal
structure of waveguides they propagate in. Here, we analytically investigate
the effects of density and magnetic stratification on linear longitudinal
magnetohydrodynamic (MHD) waves. The focus of this paper is to study the
eigenmodes of these oscillations. It is our specific aim is to understand what
happens to these MHD waves generated in flux tubes with non-constant (e.g.,
expanding or magnetic bottle) cross-sectional area and density variations. The
governing equation of the longitudinal mode is derived and solved analytically
and numerically. In particular, the limit of the thin flux tube approximation
is examined. The general solution describing the slow longitudinal MHD waves in
an expanding magnetic flux tube with constant density is found. Longitudinal
MHD waves in density stratified loops with constant magnetic field are also
analyzed. From analytical solutions, the frequency ratio of the first overtone
and fundamental mode is investigated in stratified waveguides. For small
expansion, a linear dependence between the frequency ratio and the expansion
factor is found. From numerical calculations it was found that the frequency
ratio strongly depends on the density profile chosen and, in general, the
numerical results are in agreement with the analytical results. The relevance
of these results for solar magneto-seismology is discussed.Comment: 10 pages, 5 figures, published in ApJ, uses emulateap
Multi-Orbital Molecular Compound (TTM-TTP)I_3: Effective Model and Fragment Decomposition
The electronic structure of the molecular compound (TTM-TTP)I_3, which
exhibits a peculiar intra-molecular charge ordering, has been studied using
multi-configuration ab initio calculations. First we derive an effective
Hubbard-type model based on the molecular orbitals (MOs) of TTM-TTP; we set up
a two-orbital Hamiltonian for the two MOs near the Fermi energy and determine
its full parameters: the transfer integrals, the Coulomb and exchange
interactions. The tight-binding band structure obtained from these transfer
integrals is consistent with the result of the direct band calculation based on
density functional theory. Then, by decomposing the frontier MOs into two
parts, i.e., fragments, we find that the stacked TTM-TTP molecules can be
described by a two-leg ladder model, while the inter-fragment Coulomb energies
are scaled to the inverse of their distances. This result indicates that the
fragment picture that we proposed earlier [M.-L. Bonnet et al.: J. Chem. Phys.
132 (2010) 214705] successfully describes the low-energy properties of this
compound.Comment: 5 pages, 4 figures, published versio
Speech Communication
Contains reports on four research projects.U. S. Air Force (Air Force Cambridge Research Center, Air Research and Development Command) under Contract AF19(604)-6102National Science Foundatio
- …
