4,324 research outputs found

    Research and development at ORNL/CESAR towards cooperating robotic systems for hazardous environments

    Get PDF
    One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of position and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace

    Mobilizing agro-biodiversity and social networks to cope with adverse effects of climate and social changes: experiences from Kitui, Kenya

    Get PDF
    Poster presented at 13th Congress of the International Society of Ethnobiology. Montpellier (France), 20-25 May 201

    Localized transverse bursts in inclined layer convection

    Full text link
    We investigate a novel bursting state in inclined layer thermal convection in which convection rolls exhibit intermittent, localized, transverse bursts. With increasing temperature difference, the bursts increase in duration and number while exhibiting a characteristic wavenumber, magnitude, and size. We propose a mechanism which describes the duration of the observed bursting intervals and compare our results to bursting processes in other systems.Comment: 4 pages, 8 figure

    Fungicide resistance among Cladobotryum spp. – causal agents of cobweb disease of the edible mushroom Agaricus bisporus

    Get PDF
    A survey of fungicide resistance among isolates of the mushroom pathogens Cladobotryum mycophilum and C. dendroides Types I and II was undertaken, with respect to the active ingredients thiabendazole, carbendazim (benzimidazoles) and prochloraz manganese following an epidemic in Britain and Ireland in 1994/95. The majority of isolates (41/57) were strongly resistant to thiabendazole (ED50 > 200 ppm) and were exclusively C. dendroides Type II. All C. mycophilum and C. dendroides Type I isolates, and four C. dendroides Type II isolates, were weakly resistant to thiabendazole (ED50 1–10 ppm). Thiabendazole-resistant C. dendroides Type II isolates were only weakly resistant to carbendazim (ED50 2–10 ppm) and isolates which were weakly resistant to thiabendazole were carbendazim-sensitive (ED50 < 1 ppm), demonstrating a lack of complete cross resistance between these two benzimidazole fungicides. The ED50 values for all isolates with respect to prochloraz manganese ranged from 0.14 to 7.8 ppm. Benzimidazole resistance was considered to have been an important factor influencing the severity of the 1994/95 cobweb epidemic but 25% of isolates collected were benzimidazole sensitive

    Longitudinal oscillations in density stratified and expanding solar waveguides

    Full text link
    Waves and oscillations can provide vital information about the internal structure of waveguides they propagate in. Here, we analytically investigate the effects of density and magnetic stratification on linear longitudinal magnetohydrodynamic (MHD) waves. The focus of this paper is to study the eigenmodes of these oscillations. It is our specific aim is to understand what happens to these MHD waves generated in flux tubes with non-constant (e.g., expanding or magnetic bottle) cross-sectional area and density variations. The governing equation of the longitudinal mode is derived and solved analytically and numerically. In particular, the limit of the thin flux tube approximation is examined. The general solution describing the slow longitudinal MHD waves in an expanding magnetic flux tube with constant density is found. Longitudinal MHD waves in density stratified loops with constant magnetic field are also analyzed. From analytical solutions, the frequency ratio of the first overtone and fundamental mode is investigated in stratified waveguides. For small expansion, a linear dependence between the frequency ratio and the expansion factor is found. From numerical calculations it was found that the frequency ratio strongly depends on the density profile chosen and, in general, the numerical results are in agreement with the analytical results. The relevance of these results for solar magneto-seismology is discussed.Comment: 10 pages, 5 figures, published in ApJ, uses emulateap

    Multi-Orbital Molecular Compound (TTM-TTP)I_3: Effective Model and Fragment Decomposition

    Full text link
    The electronic structure of the molecular compound (TTM-TTP)I_3, which exhibits a peculiar intra-molecular charge ordering, has been studied using multi-configuration ab initio calculations. First we derive an effective Hubbard-type model based on the molecular orbitals (MOs) of TTM-TTP; we set up a two-orbital Hamiltonian for the two MOs near the Fermi energy and determine its full parameters: the transfer integrals, the Coulomb and exchange interactions. The tight-binding band structure obtained from these transfer integrals is consistent with the result of the direct band calculation based on density functional theory. Then, by decomposing the frontier MOs into two parts, i.e., fragments, we find that the stacked TTM-TTP molecules can be described by a two-leg ladder model, while the inter-fragment Coulomb energies are scaled to the inverse of their distances. This result indicates that the fragment picture that we proposed earlier [M.-L. Bonnet et al.: J. Chem. Phys. 132 (2010) 214705] successfully describes the low-energy properties of this compound.Comment: 5 pages, 4 figures, published versio

    Speech Communication

    Get PDF
    Contains reports on four research projects.U. S. Air Force (Air Force Cambridge Research Center, Air Research and Development Command) under Contract AF19(604)-6102National Science Foundatio
    corecore