122 research outputs found

    Influence of endotoxin induced fever on the pharmacokinetics of intramuscularly administered cefepime in rabbits

    Get PDF
    This study examined the effect of experimentally induced fever on the pharmacokinetics of cefepime (75 mg/kg BW) administered intramuscularly to six rabbits. The study was carried out in two consecutive phases separated by a two-week washout period. An infection was induced by an intravenous inoculation of 5 × 108 colony-forming units of Escherichia coli 24 h before the pharmacokinetic investigation. A quantitative microbiological assay was employed to measure the plasma cefepime concentrations using an agar-gel diffusion method with Bacillus subtilis ATCC 6633 as the test organism. Twenty-four hour after the injection, the rectal temperature in the infected animals increased by 1–. There was a significant reduction in the elimination half-life by 21.8% in the febrile rabbits compared to healthy animals. In addition, the infection significantly increased the peak plasma concentrations by 11.9%, the mean residence time by 19.9%, the area under the plasma-concentration-time curve by 53.6% and the area under the moment curve by 62.3%. In conclusion, the endotoxin-induced febrile state produced significant changes in the plasma levels as well as some of the pharmacokinetic variables of cefepime in rabbits

    Mucin Dynamics in Intestinal Bacterial Infection

    Get PDF
    Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract.Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17) in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05). Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon.Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection

    Time domains of the hypoxic ventilatory response in ectothermic vertebrates

    Get PDF
    Over a decade has passed since Powell et al. (Respir Physiol 112:123–134, 1998) described and defined the time domains of the hypoxic ventilatory response (HVR) in adult mammals. These time domains, however, have yet to receive much attention in other vertebrate groups. The initial, acute HVR of fish, amphibians and reptiles serves to minimize the imbalance between oxygen supply and demand. If the hypoxia is sustained, a suite of secondary adjustments occur giving rise to a more long-term balance (acclimatization) that allows the behaviors of normal life. These secondary responses can change over time as a function of the nature of the stimulus (the pattern and intensity of the hypoxic exposure). To add to the complexity of this process, hypoxia can also lead to metabolic suppression (the hypoxic metabolic response) and the magnitude of this is also time dependent. Unlike the original review of Powell et al. (Respir Physiol 112:123–134, 1998) that only considered the HVR in adult animals, we also consider relevant developmental time points where information is available. Finally, in amphibians and reptiles with incompletely divided hearts the magnitude of the ventilatory response will be modulated by hypoxia-induced changes in intra-cardiac shunting that also improve the match between O2 supply and demand, and these too change in a time-dependent fashion. While the current literature on this topic is reviewed here, it is noted that this area has received little attention. We attempt to redefine time domains in a more ‘holistic’ fashion that better accommodates research on ectotherms. If we are to distinguish between the genetic, developmental and environmental influences underlying the various ventilatory responses to hypoxia, however, we must design future experiments with time domains in mind

    NMR Metabolomics Protocols for Drug Discovery

    Get PDF
    Drug discovery is an extremely difficult and challenging endeavor with a very high failure rate. The task of identifying a drug that is safe, selective and effective is a daunting proposition because disease biology is complex and highly variable across patients. Metabolomics enables the discovery of disease biomarkers, which provides insights into the molecular and metabolic basis of disease and may be used to assess treatment prognosis and outcome. In this regard, metabolomics has evolved to become an important component of the drug discovery process to resolve efficacy and toxicity issues, and as a tool for precision medicine. A detailed description of an experimental protocol is presented that outlines the application of NMR metabolomics to the drug discovery pipeline. This includes: (1) target identification by understanding the metabolic dysregulation in diseases, (2) predicting the mechanism of action of newly discovered or existing drug therapies, (3) and using metabolomics to screen a chemical lead to assess biological activity. Unlike other OMICS approaches, the metabolome is “fragile”, and may be negatively impacted by improper sample collection, storage and extraction procedures. Similarly, biologically-irrelevant conclusions may result from incorrect data collection, pre-processing or processing procedures, or the erroneous use of univariate and multivariate statistical methods. These critical concerns are also addressed in the protocol

    Méthode de prévision des pressions interstitielles

    No full text
    Dans une première partie, les auteurs utilisent un modèle rhéologique Incrémental intergranulaire pour prévoir le comportement homogène non drainé d'un échantillon saturé d'argile ou de sable. Cette analyse est réalisée en contraintes effectives et conduit à la prévision de la pression interstitielle en imposant la nonvariation de volume. Les résultats sont confrontés à l'expérience. Dans la seconde partie, les auteurs proposent et appliquent une méthode de calcul des pressions interstitielles dans les ouvrages non drainés, méthode utilisant également des caractéristiques mécaniques intergranulaires et une analyse en contraintes effectives. Les applications portent sur la prévision des pressions interstitielles au voisinage d’un pieu sollicité à l'arrachement, le sol étant supposé élastique, ainsi que sur le calcul du champ de pression interstitielle et des chemins en contraintes effectives, dans un essai triaxial localement ou globalement non drainé
    corecore