850 research outputs found

    COUNTING SMALL INDUCED SUBGRAPHS WITH HEREDITARY PROPERTIES

    Get PDF
    We study the computational complexity of the problem \#INDSUB(\Phi) of counting k-vertex induced subgraphs of a graph G that satisfy a graph property \Phi. Our main result establishes an exhaustive and explicit classification for all hereditary properties, including tight conditional lower bounds under the Exponential Time Hypothesis (ETH): If a hereditary property \Phi is true for all graphs, or if it is true only for finitely many graphs, then \#INDSUB(\Phi) is solvable in polynomial time. Otherwise, \#INDSUB(\Phi) is \#\sansW[\sansone]-complete when parameterized by k, and, assuming ETH, it cannot be solved in time f(k) \cdot |G|o(k) for any function f. This classification features a wide range of properties for which the corresponding detection problem (as classified by Khot and Raman [Theoret. Comput. Sci., 289 (2002), pp. 997-1008]) is tractable but counting is hard. Moreover, even for properties which are already intractable in their decision version, our results yield significantly stronger lower bounds for the counting problem. As an additional result, we also present an exhaustive and explicit parameterized complexity classification for all properties that are invariant under homomorphic equivalence. By covering one of the most natural and general notions of closure, namely, closure under vertex-deletion (hereditary), we generalize some of the earlier results on this problem. For instance, our results fully subsume and strengthen the existing classification of \#INDSUB(\Phi) for monotone (subgraph-closed) properties due to Roth, Schmitt, and Wellnitz [SIAM J. Comput., (2022), pp. FOCS20-139-FOCS20-174]

    Rapid Profiling of Marine Notches Using a Handheld Laser Distance Meter

    Get PDF
    A rapid, single-user profiling method for rocky shores is described. The Leica Disto D8 handheld laser distance meter measures distance up to 100 m and inclination in 360 degrees. It automatically calculates horizontal distance and vertical elevation. Memory storage accommodates data for 30 measurement points, allowing easy plotting of shore profiles. This technique allows even inaccessible, dangerous, and overhanging cliff faces to be evaluated faithfully and within minutes. It is a major improvement over standard methods that often involve risky coasteering and climbing. Examples are given from marine notches in Thailand

    Role of the Recoil Ion in Single-Electron Capture and Single-Ionization Processes for Collisions of Protons with He and Ar Atoms

    Get PDF
    In this work the single-electron capture and single-ionization processes are studied for proton collisions with He and Ar atoms at impact energies in the range 25–100 keV. Classical trajectory Monte Carlo simulations are benchmarked against experimental data obtained at the reaction microscope in Bariloche, Argentina, which employs the cold target recoil-ion momentum spectroscopy technique. Special emphasis is placed on describing the momentum transfer to the recoil ion for these collision systems

    Relativistic Effects on Interchannel Coupling in Atomic Photoionization: The Photoelectron Angular Distribution of Xe

    Full text link
    Measurements of the photoelectron angular-distribution asymmetry parameter β for Xe 5s photoionization have been performed in the 80–200 eV photon-energy region. The results show a substantial deviation from the nonrelativistic value of β=2 and provide a clear signature of significant relativistic effects in interchannel coupling

    USA Observation of Spectral and Timing Evolution During the 2000 Outburst of XTE J1550-564

    Get PDF
    We report on timing and spectral observations of the 2000 outburst of XTE J1550-564 made by the Unconventional Stellar Aspect (USA) Experiment on board the Advanced Research and Global Observation Satellite (ARGOS). We observe a low-frequency quasi-periodic oscillation (LFQPO) with a centroid frequency that tends to increase with increasing flux and a fractional rms amplitude which is correlated with the hardness ratio. The evolution of the hardness ratio (4--16 keV/1--4 keV) with time and source flux is examined. The hardness-intensity diagram (HID) shows a cyclical movement in the clockwise direction and possibly indicates the presence of two independent accretion flows. We observe a relationship between the USA 4--16 keV count rate and radio observations and discuss this in the context of previously observed correlations between X-ray, radio, optical and IR data. We examine our results in the context of models invoking two accretion flows: a thin disk and a hot sub-Keplerian flow.Comment: 11 pages, 2 figure

    Defining Meyer's loop-temporal lobe resections, visual field deficits and diffusion tensor tractography

    Get PDF
    Anterior temporal lobe resection is often complicated by superior quadrantic visual field deficits (VFDs). In some cases this can be severe enough to prohibit driving, even if a patient is free of seizures. These deficits are caused by damage to Meyer's loop of the optic radiation, which shows considerable heterogeneity in its anterior extent. This structure cannot be distinguished using clinical magnetic resonance imaging sequences. Diffusion tensor tractography is an advanced magnetic resonance imaging technique that enables the parcellation of white matter. Using seed voxels antero-lateral to the lateral geniculate nucleus, we applied this technique to 20 control subjects, and 21 postoperative patients. All patients had visual fields assessed with Goldmann perimetry at least three months after surgery. We measured the distance from the tip of Meyer's loop to the temporal pole and horn in all subjects. In addition, we measured the size of temporal lobe resection using postoperative T1-weighted images, and quantified VFDs. Nine patients suffered VFDs ranging from 22% to 87% of the contralateral superior quadrant. In patients, the range of distance from the tip of Meyer's loop to the temporal pole was 24–43 mm (mean 34 mm), and the range of distance from the tip of Meyer's loop to the temporal horn was –15 to +9 mm (mean 0 mm). In controls the range of distance from the tip of Meyer's loop to the temporal pole was 24–47 mm (mean 35 mm), and the range of distance from the tip of Meyer's loop to the temporal horn was –11 to +9 mm (mean 0 mm). Both quantitative and qualitative results were in accord with recent dissections of cadaveric brains, and analysis of postoperative VFDs and resection volumes. By applying a linear regression analysis we showed that both distance from the tip of Meyer's loop to the temporal pole and the size of resection were significant predictors of the postoperative VFDs. We conclude that there is considerable variation in the anterior extent of Meyer's loop. In view of this, diffusion tensor tractography of the optic radiation is a potentially useful method to assess an individual patient's risk of postoperative VFDs following anterior temporal lobe resection

    Fouling Of Axial Flow Compressors - Causes, Effects, Detection, And Control.

    Get PDF
    LecturePg. 55-76The fouling of axial flow compressors is a serious operating problem in gas turbines and in process axial flow compressors. Gas turbines are being increasingly used in cogeneration applications and with the large air mass flowrate (e. g., 633 lb/sec for a 80 MW gas turbine) foulants even in the ppm range can cause deposits on the blading, resulting in a severe performance decrement. This is a common operating problem experienced by almost all operators of gas turbines. The effect of compressor fouling is a drop in air flow and compressor isentropic efficiency, which then manifests itself as a drop in power output and thermal efficiency. In some cases, fouling can also result in s urge problems as its effect is to move the compressor surge line to the right, i. e., towards the operating line. The mechanisms are discussed for fouling, the aerodynamic and thermodynamic effects, types of foulants, detection methods, and control techniques. A brief discussion on turbine fouling is also made

    Rms-flux relation of Cyg X-1 with RXTE: dipping and nondipping cases

    Full text link
    The rms (root mean square) variability is the parameter for understanding the emission temporal properties of X-ray binaries (XRBs) and active galactic nuclei (AGN). The rms-flux relation with Rossi X-ray Timing Explorer (RXTE) data for the dips and nondip of black hole Cyg X-1 has been investigated in this paper. Our results show that there exist the linear rms-flux relations in the frequency range 0.1-10 Hz for the dipping light curve. Moreover, this linear relation still remains during the nondip regime, but with the steeper slope than that of the dipping case in the low energy band. For the high energy band, the slopes of the dipping and nondipping cases are hardly constant within errors. The explanations of the results have been made by means of the ``Propagating Perturbation'' model of Lyubarskii (1997).Comment: 15 pages, 12 figures, Accepted for publication in Astrophysics & Space Scienc
    corecore