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Abstract
Many graph parameters can be expressed as homomorphism counts to fixed target graphs; this
includes the number of independent sets and the number of k-colorings for any fixed k. Dyer
and Greenhill (RSA 2000) gave a sweeping complexity dichotomy for such problems, classifying
which target graphs render the problem polynomial-time solvable or #P-hard. In this paper,
we give a new and shorter proof of this theorem, with previously unknown tight lower bounds
under the exponential-time hypothesis. We similarly strengthen complexity dichotomies by Focke,
Goldberg, and Živný (SODA 2018) for counting surjective homomorphisms to fixed graphs. Both
results crucially rely on our main contribution, a complexity dichotomy for evaluating linear
combinations of homomorphism numbers to fixed graphs. In the terminology of Lovász (Colloquium
Publications 2012), this amounts to counting homomorphisms to quantum graphs.
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1 Introduction

The classification program in counting complexity strives to identify comprehensive classes
of counting problems that are well-behaved enough to allow for exhaustive complexity
classifications [16, 9, 7, 4, 6, 5]. Particularly good candidates for such classes are counting
variants of the Constraint Satisfaction Problem (#CSP) [4, 3]. In the general #CSP, a
problem instance is defined by a set of variables V = {v1, . . . , vn}, each taking values from a
domain D. The computational task is to determine the number of assignments a : V → D

from variables to domain elements, subject to the requirement that a satisfies a set of
constraints that are part of the input. Each constraint is applied to a tuple of variables and
restricts the admissible assignments to that tuple.
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In this full generality, the #CSP framework can easily express #P-hard problems such
as counting satisfying assignments to Boolean formulas in CNF, or counting the proper k-
colorings of graphs G, for fixed k ∈ N. For instance, to count k-colorings, interpret the vertices
of G as variables over the domain {1, . . . , k} and constrain variable pairs corresponding to
adjacent vertices to have distinct assignments.

Among other properties, the complexity of #CSP depends on the types of constraints
present in the instance. This motivates the study of #CSP(F) for fixed constraint sets F ,
where only instances with constraints from F are allowed as input. After a wealth of research,
a full dichotomy for these problems is known by now: For every finite set F , the problem
#CSP(F) has been shown to be either polynomial-time solvable or #P-hard, with an explicit
decidable dichotomy criterion [5, 17]. Dichotomies are known even in weighted settings [7]
that arise in statistical physics in the context of partition functions.

1.1 Graph homomorphisms

The full dichotomy for #CSP(F) was predated by numerous results for special cases,
with a particular focus on graph homomorphisms [16, 6, 24]. Given graphs G and H,
a homomorphism from G to H is a function h : V (G)→ V (H) such that any edge uv ∈ E(G)
is mapped to an edge h(u)h(v) ∈ E(H). Homomorphisms from G to H are sometimes also
called H-colorings of G, since they generalize q-colorings for fixed q ∈ N by taking H = Kq.

We write Hom(G,H) for the number of homomorphisms from G to H. For a fixed
graph H, the computational problem Hom(?,H) asks to compute Hom(G,H) on input a
graph G. This is indeed a particular #CSP(F) problem: Viewing V (G) as variables and
V (H) as domain, a homomorphism h corresponds to an assignment from variables to domain
elements that respects certain constraints on variable pairs: If u and v are connected by an
edge in G, then its assignments h(u) and h(v) must be such that h(u)h(v) is an edge of H.
Following this interpretation, it can be seen that the class of problems Hom(?,H) for fixed
H correspond exactly to #CSP(F) problems where F contains only a single constraint, and
this constraint depends only (symmetrically) on two variables.

Despite these restrictions, many interesting counting problems on graphs can be expressed
as Hom(?,H) for suitable choices of H. This includes the number of independent sets in a
graph, the number of k-colorings for fixed k, and certain partition functions from statistical
physics. In a seminal result, Dyer and Greenhill proved a full classification for the complexity
of Hom(?,H) when H is an undirected graph that may contain self-loops. In the following,
we say that a graph is reflexive if every vertex features a self-loop, and we say that it is
irreflexive if no vertex does. Note that bipartite graphs are irreflexive.

I Theorem 1 (Dyer and Greenhill [16]). Let H be a fixed undirected graph. If each connected
component of H is a complete bipartite graph or a reflexive complete graph, then Hom(?,H)
can be computed in polynomial time. Otherwise the problem is #P-hard, even on irreflexive
input graphs.

This exhaustive dichotomy was extended in numerous ways, including a setting where H
has edge-weights and the weight of a homomorphism is the product of edge-weights in the
image, counted with multiplicities [6, 24, 8]: Given an input graph G, the task is to determine
the sum of weights of all homomorphisms from G to H, a quantity that occurs naturally in
statistical physics. The case of directed graphs was also fully classified [15, 7]. Furthermore,
a variant was investigated that asks to determine the number of homomorphisms modulo a
fixed prime [18, 22, 23], but a full dichotomy was not yet obtained for such problems.
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Our Contribution: New proof of Theorem 1 with tight lower bound under ETH.

Using techniques originally introduced by Lovász [27], we significantly shorten the proof of
Theorem 1. Our new proof also gives tight conditional lower bounds on the running times
needed to solve the #P-hard cases: For a k-vertex graph H and an n-vertex graph G, the
quantity Hom(G,H) can be computed in time roughly O(kn) using exhaustive search. It
was shown by Cygan et al. [13] that Hom(G,H) cannot be computed in time exp(o(n log k))
when both G and H are input, unless the widely-believed exponential-time hypothesis (ETH)
by Impagliazzo and Paturi [25] fails. However, this result leaves open the possibility of
exp(o(n))-time algorithms for particular fixed graphs H for which Hom(?,H) is #P-hard. We
rule out such algorithms under ETH. In fact, we only require the counting exponential-time
hypothesis #ETH, introduced in [14]. This makes the result slightly stronger, since ETH
implies #ETH.

I Theorem 2. For every hard graph H in Theorem 1, the problem Hom(?,H) cannot be
computed in exp(o(n)) time on n-vertex input graphs unless #ETH fails. This holds even for
bipartite and irreflexive inputs with O(n) edges.

1.2 Surjective homomorphisms
Focke, Goldberg, and Živný [20] used Theorem 1 as a starting point to classify the complexity
of counting homomorphisms with surjectivity constraints. We call a homomorphism h from
G to H surjective if its image contains every vertex and every edge of H. That is, for every
vertex v ∈ V (H), the preimage h−1(v) is non-empty, and for every edge st ∈ E(H), there
is at least one edge between the sets h−1(s) and h−1(t) in G. This notion can be relaxed
by requiring surjectivity only on a subset of the vertices and edges of H. For instance,
vertex-surjective homomorphisms only require every vertex to be hit. Likewise, a compaction
is a vertex-surjective homomorphism from G to H that hits all non-loop edges of H.

The above authors proved a dichotomy theorem for counting vertex-surjective homomor-
phisms to fixed graphs H [20], discovering that the dichotomy criterion for these problems
coincides with that for standard homomorphisms. They proved a similar dichotomy for
counting compactions and showed that there are significantly fewer polynomial-time solvable
cases.

I Theorem 3 (Focke, Goldberg, and Živný [20]). Let H be a fixed graph. The problem
VertSurj(?,H) is polynomial-time solvable if every connected component of H is a complete
bipartite graph or a reflexive complete graph. The problem Comp(?,H) is polynomial-time
solvable if every component of H is an irreflexive star or a reflexive complete graph of size at
most two. In all other cases, the problems are #P-hard, even on irreflexive inputs.

Our Contribution: Simplified and strengthened version of Theorem 3.

We define a problem that jointly generalizes the problems VertSurj(?,H) and Comp(?,H)
in a natural way. To this end, we consider target graphs H in which some edges and vertices
of H are marked. A partially surjective homomorphism then is a homomorphism h whose
image includes all marked objects of H; we write PartSurj(G,H) for their number. With
appropriate choices of markings, this can be seen to generalize various quantities, such as
homomorphisms, surjective and vertex-surjective homomorphisms, and compactions. We
obtain the following complexity dichotomy, from which Theorem 3 easily follows.

I Theorem 4. Let H be a graph in which some edges and/or vertices are marked, and let
D(H) be the set of graphs obtainable from H by deleting marked objects.
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If every graph in D(H) is a disjoint union of complete bipartite graphs and reflexive
complete graphs, then PartSurj(?,H) is polynomial-time solvable.
Otherwise, PartSurj(?,H) is #P-hard and cannot be computed in exp(o(n)) time on
n-vertex input graphs unless #ETH fails. This holds even for bipartite and irreflexive
inputs with O(n) edges.

1.3 Our techniques: Homomorphisms to quantum graphs
While the class of homomorphism problems Hom(?,H) to fixed H subsumes many interesting
counting problems for graphs, there are also natural problems that cannot be expressed
in this framework. This includes the number of perfect matchings in a graph [21, 28]. To
give another example that is more similar to homomorphism counts, recall that counting
3-colorings in a graph is expressible as Hom(?,K3). However, counting surjective 3-colorings
(colorings that use all three colors) cannot be expressed as Hom(?,H) for a fixed graph H.
This is because, for any graph G, the number of surjective 3-colorings is

VertSurj(G,K3) = Hom(G,K3)− 3 ·Hom(G,K2) + 3 ·Hom(G,K1) . (1)

However, the expression of a graph parameter as a linear combination of homomorphism
counts Hom(?,H) is known to be unique, see [27, Exercise 5.51], ruling out the existence of
a graph H with VertSurj(?,K3) = Hom(?,H).

More generally, the uniqueness of such expressions implies that closing the class of
homomorphism counts under point-wise linear combinations gives a strictly richer class
of graph parameters. Following Lovász’s terminology [27, Chapter 6], we call these graph
parameters homomorphism counts to quantum graphs. Here, a quantum graph H is a formal
linear combination

H =
∑
H∈C

αHH

for a finite set of constituent graphs C where each H ∈ C has an associated coefficient αH ∈ Q.
The canonical linear extension of homomorphism counts to quantum graphs H then reads

Hom(G,H) =
∑
H∈C

αH ·Hom(G,H).

In other words, every finite (point-wise) linear combination of homomorphism counts to
fixed graphs can be expressed as a homomorphism count to a fixed quantum graph. The
computational problem Hom(?,H) for fixed H is to compute Hom(G,H) for a given input G.

As exemplified in (1), problems that do not immediately appear to be linear combinations
of homomorphism counts may in fact be expressible in this format. For instance, all
partially surjective homomorphism counts can be expressed as linear combinations of ordinary
homomorphism counts.

Our Contribution: Dichotomy for homomorphisms to quantum graphs.

We prove that the complexity of counting homomorphisms to fixed graphs enjoys a very
favorable monotonicity property. (A similar phenomenon was already observed for linear
combinations of homomorphism counts from fixed graphs [10, 12].)

Let H be a fixed quantum graph that is properly normalized, that is, its constituents are
pairwise non-isomorphic and all coefficients are non-zero. Then, for any constituent H of
H, the problem Hom(?,H) reduces to Hom(?,H) under polynomial-time Turing reductions.
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That is, given access to an oracle that delivers the quantity Hom(G′, H) on any query G′, we
can compute Hom(G,H) for any input graph G and any constituent H of H. In particular,
if Hom(?,H) is #P-hard, then any linear combination of homomorphism counts containing
the summand Hom(?,H) is #P-hard.

Moreover, to determine Hom(G,H) for an n-vertex graph G, our reduction only needs to
query graphs G′ with n+ c vertices, with c depending only on H. This makes the reduction
very suitable in the exponential-time setting: An algorithm with running time O(bn) for
Hom(?,H) would imply O(bn) time algorithms for any constituent problem Hom(?,H). We
use the complexity monotonicity of quantum graphs to obtain our final dichotomy theorem,
stated as follows.

I Theorem 5. Let H =
∑k

i=1 αiHi be a fixed quantum graph, where H1, . . . ,Hk are fixed
pairwise non-isomorphic graphs and α1, . . . , αk ∈ Q \ {0} are fixed.

If the problem Hom(?,Hi) can be solved in polynomial time for every i ∈ [k], then so can
Hom(?,H).
If there is some i ∈ [k] such that Hom(?,Hi) is #P-hard, then so is Hom(?,H). In this
case, unless #ETH fails, Hom(?,H) cannot be solved in time exp(o(n)), even for bipartite
and irreflexive input graphs with O(n) edges.

The quantum graph H in this theorem may have negative coefficients; if H has only
positive coefficients, the #P-hardness of Hom(?,H) can already be derived from Theorem 1.

Organization of the paper
After introducing notions related to homomorphisms and exponential-time complexity in Sec-
tion 2, we prove the dichotomy theorem for homomorphisms to quantum graphs (Theorem 5)
in Section 3. Using the complexity monotonicity of homomorphism numbers to quantum
graphs, we sketch the proof of the exponential-time Dyer–Greenhill theorem (Theorem 2)
in Section 4. Finally, we derive the dichotomy for partially surjective homomorphisms
(Theorem 4) in Section 5.

Due to lack of space, some proofs are deferred to the full version.

2 Preliminaries

Let G be the set of all unlabeled and undirected finite graphs. These graphs may have
self-loops but no parallel edges. In the remainder of this section, let G,H ∈ G. We denote
the vertex set of G with V (G) and the edge set with E(G).

Homomorphisms and graph algebra:

Let Hom(G,H) be the number of homomorphisms from G to H, that is, functions h :
V (G) → V (H) such that any edge uv ∈ E(G) is mapped to an edge h(u)h(v) ∈ E(H).
For fixed H, we write Hom(?,H) for the graph parameter that maps input graphs G to
Hom(G,H).

Our proofs rely on a result of Borgs et al. [2, Lemma 4.2], who show that the graph
function Hom, when viewed as a matrix, has certain non-singular finite submatrices. We use
the following extension, which we derive from the original result in the full version.

I Lemma 6. For any set of pairwise non-isomorphic graphs H1, . . . ,Hk, there exist irreflexive
graphs F1, . . . , Fk such that the k × k matrix M with M [i, j] = Hom(Fi, Hj) is invertible.
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Even though H1, . . . ,Hk may feature self-loops, the lemma guarantees the existence of
irreflexive graphs F1, . . . , Fk. In fact, these graphs can even be guaranteed to be 3-colorable.

Our proofs also rely upon two binary operations on graphs (which can be viewed as graph
products) and their effects on homomorphism counts: The disjoint union of graphs, and its
“dual”, the tensor product.

I Definition 7. Let A,B be graphs on disjoint vertex sets. The disjoint union A ∪ B has
vertex set V (A) ∪ V (B) and consists of a copy of A and one of B.

The tensor product A⊗B is the graph on vertex set V (A)×V (B) where (u, v) and (u′, v′)
are adjacent if and only if (u, u′) ∈ E(A) and (v, v′) ∈ E(B).

From a matrix perspective, the adjacency matrix of A ∪ B is a block matrix with blocks
corresponding to A and B, and the adjacency matrix of A⊗B is the Kronecker product of
the respective adjacency matrices. The following identities hold for all vertex-disjoint graphs
G,F,A,B:

Hom(G ∪ F,A) = Hom(G,A) ·Hom(F,A) , and (2)
Hom(G,A⊗B) = Hom(G,A) ·Hom(G,B) . (3)

If additionally G is connected, then we also have

Hom(G,A ∪B) = Hom(G,A) + Hom(G,B) . (4)

The proofs are elementary and can be found in [27, (5.28)–(5.30)].

Exponential-time complexity:

The counting exponential time hypothesis (#ETH) of Dell et al. [14], adapted from the
decision setting of Impagliazzo, Paturi, and Zane [25, 26], asserts that there is no exp(o(m))
time algorithm to count the satisfying assignments of a given 3-CNF formula with m clauses.
We use the following stringent type of polynomial-time reduction:

I Definition 8 (Linear Reduction). Let f, g : G → Q be two graph parameters. We write
f � g if there is a polynomial-time Turing reduction from f to g that, on input a graph
with m edges, queries only graphs with at most O(m) edges.

Note that � is a reflexive and transitive relation; it is called size-preserving reducibility in
[19, p. 422]. If f � g, then an algorithm with running time exp(o(m)) for g on m-edge graphs
would imply one for f .

3 Counting homomorphisms to quantum graphs

We are ready to prove Theorem 5, the dichotomy for counting homomorphisms to quantum
graphs. We establish the theorem via the following proposition on the complexity monotonicity
for counting homomorphisms to quantum graphs.

I Proposition 9 (Complexity Monotonicity). Fix any quantum graph

H =
k∑

j=1
αjHj
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with pairwise non-isomorphic graphs H1, . . . ,Hk and coefficients α1, . . . , αk ∈ Q \ {0}. For
every fixed j ∈ [k], we then have

Hom(?,Hj) � Hom(?,H).

Furthermore, if the input graph G for Hom(?,Hj) is irreflexive, then all queries for Hom(?,H)
are irreflexive as well.

Proof. Without loss of generality, let j = 1. By Lemma 6, there exist irreflexive graphs
F1, . . . , Fk such that the matrix M with M [i, j] = Hom(Fi, Hj) is invertible. On input a
graph G, we first construct the graphs G ∪ Fi for all i ∈ [k]. By (2), we obtain the following
linear equation for every i ∈ [k]:

Hom(G ∪ Fi, H) =
k∑

j=1
αj Hom(G,Hj) ·M [i, j] . (5)

The set of these equations for all i ∈ [k] forms a linear equation system b = Mx, with
bi = Hom(G ∪ Fi, H) for all i ∈ [k] and xj = αj Hom(G,Hj) for all j ∈ [k]. Thus if G is
the input and we wish to compute Hom(G,H1) using the oracle for Hom(?,H), we use the
following procedure:
1. Compute the vector b ∈ Qk using k queries to Hom(?,H).
2. Output the number (M−1b)1/α1.
This indeed yields Hom(G,H1), because α1 Hom(G,H1) = (M−1b)1 and α1 6= 0 hold. Since
H1, . . . ,Hk is fixed, we can hard-code the constants αj and graphs Fj , for j ∈ [k], as well as
the matrix M−1 into the reduction. The reduction itself runs in linear time to prepare the
queries G ∪ Fi. Given as input an m-edge graph G, it only issues queries on graphs with
m+ C edges, where C is a fixed constant depending only on H. If G is irreflexive, then so
are all query graphs G ∪ Fi for i ∈ [k], since all Fi are irreflexive. J

Theorem 5 follows easily from Proposition 9 and Theorem 2.

4 Revisiting the Dyer-Greenhill dichotomy

We outline our new proof of Theorem 1 and classify the complexity of Hom(?,H). Our proof
also gives a tight lower bound under #ETH, resulting in Theorem 2.

Throughout this section, let us say that a graph H is hom-easy if every connected
component of H is either a complete bipartite graph Ka,b for a, b ∈ N or a reflexive complete
graph K◦q for q ∈ N. It is straightforward to check that Hom(?,H) can be solved in linear
time if H is a hom-easy graph. If H is not hom-easy, we call H hom-hard. In the remainder of
the section, we show how to establish the #P-hardness of Hom(?,H) for hom-hard graphs H
in three steps.

Step 1: Ensuring bipartiteness

Rather than working directly with H, we proceed to its bipartite double cover H⊗K2. Recall
from (3) that

Hom(G,H ⊗K2) = Hom(G,H) ·Hom(G,K2)

holds for all graphs G. Since K2 is hom-easy, we can compute Hom(G,K2) in linear time,
and this readily implies

Hom(?,H ⊗K2) � Hom(?,H) . (6)
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Hence, in order to establish hardness of Hom(?,H), it suffices to establish hardness of
Hom(?,H ⊗K2) for the bipartite graph H ⊗K2. Note that H ⊗K2 is hom-hard if H is
hom-hard. We remark that (6) is a significant shortcut compared to the original proof of
Dyer and Greenhill [16], a large part of which dealt with non-bipartite graphs H.

Step 2: Isolating 2-neighborhoods

Similar to the original proof [16], we successively isolate induced subgraphs from H ⊗K2
until reaching a hard base case. We provide the details of this step in Section 4.1.

Given a bipartite graph B and v ∈ V (B), let Bv denote the subgraph induced by vertices
of distance at most 2 from v. We show Hom(?,Bv) � Hom(?,B) for all v ∈ V (B) by using
the monotonicity for quantum graph homomorphisms. This reduction may happen to be
useless for some vertices v ∈ V (B), as Bv may be a complete bipartite graph Ka,b or B itself.
If this holds for all v ∈ V (B), we call B an impasse.

Starting at B = H ⊗K2, we repeatedly pick a vertex v ∈ V (B) and set B := Bv until
reaching an impasse P . We show that the vertices in the above process can be chosen to
ensure that P is not a Ka,b. Since Hom(?, P ) � Hom(?,H ⊗K2) follows, it remains to prove
hardness for this impasse P .

Step 3: Exploded four-vertex paths

A structural argument shows that any impasse P that is not a Ka,b is in fact a 4-vertex
path P (a1, a2, a3, a4) in which the i-th vertex is replaced by a positive number ai of clones.
For example, P (1, 3, 4, 2) is the following graph:

In Section ??, we prove the hardness of Hom(?, P ) with P = P (a1, a2, a3, a4) for arbitrary
fixed integers a1, a2, a3, a4 The reduction starts from the #P-hard problem of counting
independent sets, for which #ETH rules out 2o(m) time algorithms [11]. In the special case
P = P (1, 1, 1, 1), a simple reduction is possible: Since P = ⊗ holds, (3) implies

Hom(G,P ) = Hom(G, ) ·Hom(G, ) . (7)

Since Hom(G, ) counts precisely the independent sets of G, and Hom(G, ) is non-zero
and can be computed in linear time, the reduction Hom(?, ) � Hom(?, P ) is immediate.

Putting the steps together

Given a hom-hard graphH, the three steps outlined above identify a graph P = P (a1, a2, a3, a4)
for a1, a2, a3, a4 ∈ N such that

Hom(?, P ) � . . . � Hom(?,H ⊗K2) � Hom(?,H). (8)

By establishing hardness of Hom(?, P ), we thus prove hardness of Hom(?,H).

4.1 Details of Step 2: Successively isolating 2-neighborhoods
Let B be a bipartite, hom-hard graph, initially B = H ⊗ K2. Since B is hom-hard, it
does not contain a connected component that is a complete bipartite graph. We find a
hom-hard impasse P with Hom(?, P ) � Hom(?,H ⊗K2) by transitioning successively to
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proper induced subgraphs of B, in a manner similar to the bipartite case of [16, Theorem 1.1].
In the following, we describe one step of this process.

For any vertex v ∈ V (B), recall that Bv is the subgraph of B induced by vertices at
distance at most 2 from v. We prove Hom(?,Bv) � Hom(?,B). To this end, we first show
in Lemma 10 how to compute the sum

∑
v∈V (B) Hom(G,Bv) on input G with an oracle for

Hom(?,B). Combining this with Proposition 9, we will then extract Hom(G,Bv) for any
fixed vertex v ∈ V (B) from the sum in Proposition 11.

I Lemma 10. Let B be a bipartite graph and let G be a connected bipartite graph with
bipartition V (G) = L ∪R. Let Ga

L be derived from G by adding an “apex” vertex a that is
adjacent to all of R, and let Ga

R be derived by adding an apex vertex a adjacent to all of L.
Then

Hom(Ga
L, B) + Hom(Ga

R, B) =
∑

v∈V (B)

Hom(G,Bv) . (9)

Proof. For any v ∈ V (B), we write Hom(Ga
L, B | a→ v) for the number of homomorphisms

from Ga
L to B that map a to v, with an analogous definition for Ga

R. We observe that

Hom(Ga
L, B) + Hom(Ga

R, B) =
∑

v∈V (B)

Hom(Ga
L, B | a→ v) + Hom(Ga

R, B | a→ v) , (10)

because the set of homomorphisms h from Ga
L to B can be partitioned according to the

image h(a) = v and the same applies to homomorphisms from Ga
R. In the remainder of the

proof, we establish that, for all v ∈ V (B),

Hom(Ga
L, B | a→ v) + Hom(Ga

R, B | a→ v) = Hom(G,Bv). (11)

Together with (10), this implies (9). To prove (11), fix any vertex v ∈ V (B). We say that a
homomorphism h from Ga

L or Ga
R to B is an extension of a homomorphism g from G to Bv

if h agrees with g on all of V (G), and h also maps the additional vertex a in Ga
L or Ga

R to v.
We first claim that any homomorphism h from Ga

L or Ga
R to B with h(a) = v is

an extension of some homomorphism g from G to Bv. Secondly, we claim that for any
homomorphism g from G to Bv, there is precisely one homomorphism h from either Ga

L

or Ga
R to B that is an extension of g. Then (11) follows.

For the first claim, let h be a homomorphism from Ga
L to B with h(a) = v. (The argument

for homomorphisms from Ga
R is analogous.) Then h maps R to the neighborhood of v in B:

Since a has edges to all of R in Ga
L, there must be edges from h(a) = v to all of h(R)

in B. Furthermore, since G is connected, h(L) is contained in the neighborhood of h(R). It
follows that the entire image of h is contained in Bv, so the restriction g of h to V (G) is a
homomorphism from G to Bv. Hence h is an extension of g, proving the first claim.

For the second claim, let X be the bipartition side of Bv not containing v. Consider a
homomorphism g from G to Bv. Since G is connected, either g maps R to X, or g maps L
to X.
1. In the first case, we can extend g to a map h from Ga

L to B via h(a) = v, and we show
that h is indeed a homomorphism: By definition, g preserves edges on G and the image
of G is the subgraph Bv of B. Since g maps R to X, and X is the neighborhood of v
in Bv by definition of Bv, we see that h maps the edges aw for w ∈ R in Ga

L to edges
of Bv. Thus h is an extension of g. Furthermore, the map h′ from Ga

R to B obtained
from g by setting h′(a) = v is not a homomorphism, since v and R are all mapped to X,
which is an independent set in Bv.
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2. In the second case, we can extend g to a homomorphism h from Ga
R to B as above. By a

symmetric argument, h maps the edges aw for w ∈ L in Ga
R to edges of Bv. Thus h is an

extension of g.

Hence, the homomorphisms h from Ga
L and Ga

R to B are extensions of homomorphisms g
from G to Bv, and each g has precisely one extension from either Ga

L or Ga
R. This establishes

(11), thus concluding the proof. J

With Lemma 10 at hand, we can readily reduce Hom(?,Bv) to Hom(?,B).

I Proposition 11. For every bipartite graph B and every vertex v ∈ V (B), we have
Hom(?,Bv) � Hom(?,B).

Proof. Let G be the input for Hom(?,Bv). Without loss of generality, we can assume that
G is connected and bipartite with V (G) = L ∪R.

Let Ga
L and Ga

R be the graphs derived from G in Lemma 10. Both have O(n) vertices
and O(n+m) edges, with n = |V (G)| and m = |E(G)|. By (9),

Hom(Ga
L, B) + Hom(Ga

R, B) =
∑

v∈V (B)

Hom(G,Bv) .

We can compute the left-hand side with an oracle for Hom(?,B). On the right-hand side,
no graphs cancel when collecting terms for isomorphic graphs Bv, as all coefficients in the
sum are 1. Since B is fixed, all graphs and coefficients are fixed, and Proposition 9 gives
Hom(?,Bv) � Hom(?,B). J

We establish the hardness of Hom(?,B) by reduction from Hom(?,Bv) for some v ∈ V (B)
such that Bv is hom-hard and has fewer vertices than B. This is possible unless B is an
impasse or hom-easy. We prove that every connected hom-hard impasse is an exploded
4-vertex path. Since Bv is connected, this implies that disconnected hom-hard graphs cannot
be an impasse, because we can transition to a hom-hard connected component in this case.

I Lemma 12. Let B be a connected bipartite graph, but not a complete bipartite graph. If for
every v ∈ V (B) the graph Bv is either complete bipartite or equal to B, then B is isomorphic
to P (a1, a2, a3, a4) for positive integers a1, a2, a3, a4.

Proof. Let V (B) = L ∪R be a bipartition of B. We define:
S as the set of all v ∈ V (B) such that Bv is equal to B.
T as the set of all v ∈ V (B) such that Bv is a complete bipartite graph.

The sets S and T partition V (B) by the assumptions on B. Let A1 = L ∩ T ; A2 = R ∩ S;
A3 = L ∩ S; A4 = R ∩ T . We claim that these sets witness that B is an exploded 4-vertex
path P (|A1|, |A2|, |A3|, |A4|).

By definition of L and R, each of these four sets are independent in B and there are no
edges between A1 and A3 or between A2 and A4. There are also no edges between A1 and A4:
To see this, suppose for contradiction that uv ∈ A1 × A4 is an edge of B. Thus we have
u ∈ N(v). Since Bv is the complete bipartite graph induced by N(v) ⊆ L and N(N(v)) ⊆ R,
the vertex u is adjacent to all vertices of N(N(v)). By the symmetric argument for Bu, the
vertex v is adjacent to all vertices of N(N(u)). Together, this implies N(v) = N(N(N(v)))
and N(u) = N(N(N(u))), and thus by connectivity of B that N(v) = L and N(u) = R. This
contradicts with the assumption that B is not a complete bipartite graph, thus B cannot
contain an edge between A1 and A4.
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By definition of S, all vertices of A2 are adjacent to all vertices of L and all vertices
of A3 are adjacent to all vertices of R. Thus B[A1, A2], B[A2, A3], and B[A3, A4] are
complete bipartite graphs. This establishes that B is isomorphic to an exploded 4-vertex
path P (|A1|, |A2|, |A3|, |A4|). If at least one of the sets A1, . . . , A4 were empty, then B would
be isomorphic to a complete bipartite graph. Since this is not the case, all sets A1, . . . , A4
are non-empty. This concludes the proof of the claim. J

4.2 Putting the steps together
Proof of Theorem 2. If H is a reflexive complete graph or a complete bipartite graph,
then Hom(G,H) can be easily computed in polynomial time: If H is a reflexive complete
graph, then Hom(G,H) = |V (H)||V (G)| holds. If H is a complete bipartite graph Ka,b, then
Hom(G,H) = 0 if G is not bipartite. Moreover, if G = (U, V,E) is bipartite and connected,
then Hom(G,H) = a|U |b|V | + a|V |b|U | holds and is easy to compute as well. Disjoint unions
of such graphs can be handled by (2) and (4).

Otherwise, assume H is a hom-hard graph. Then B := H ⊗K2 is a bipartite hom-hard
graph and we have Hom(?,H ⊗K2) � Hom(?,H) by (6). Now continue replacing B with a
hom-hard graph Bv for v ∈ V (B) until an impasse P is reached. By successive applications
of Proposition 11, we have Hom(?, P ) � Hom(?,H ⊗K2). By Lemma 12, the graph P is
a non-trivial exploded 4-vertex path. The problem Hom(?, P ) is #P-hard and hard under
#ETH, as we show in the full version of this paper. These hardness results transfer under
�-reductions to Hom(?,H), which proves the claim. J

5 Counting partially surjective homomorphisms

Finally, we prove a dichotomy for PartSurj(?,H), thus establishing Theorem 4. For a fixed
graph H with marked vertices and edges, let D(H) denote the set of graphs obtainable
from H by deleting marked objects. We first show in Lemma 13 that PartSurj(?,H) can
be expressed as a linear combination of functions Hom(?, F ) for F ∈ D(H). Then we apply
Theorem 5 to classify the complexity of these linear combinations.

I Lemma 13. For every graph H with markings, there is a quantum graph F =
∑

F∈D(H) αFF

such that PartSurj(G,H) = Hom(G,F ) holds for all graphs G. After collecting for isomor-
phic graphs, we have αH = 1 and αF < 0 for every graph F ∈ D(H) obtained by deleting at
most one marked edge from H.

Proof of Lemma 13. Let G be a graph and H be a graph with possible markings. We first
express Hom(?,H) as a linear combination of functions PartSurj(?, F ):

Hom(G,H) =
∑

F

PartSurj(G,F ) , (12)

where the sum is over all distinct labeled graphs F that can be obtained by deleting marked
vertices or edges of H, and these graphs F inherit the markings from H.

To prove (12), note that the left side of (12) counts all homomorphisms h from G toH. We
group them according to which marked objects of H they hit. Let M ⊆ V (H)∪E(H) be the
set of marked objects. For a set S ⊆M , we say that h has type S if the image of h contains S
and is disjoint from M \ S. Every homomorphism has exactly one type. Note that uv ∈ S
implies {u, v} ⊆ S, because h is a homomorphism. Thus removing M \ S from both M

and H yields a possibly-marked graph H − (M \ S). Moreover, PartSurj(G,H − (M \ S)) is
exactly the number of homomorphisms of type S by definition of PartSurj. This proves (12).
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Next, we “invert” (12). We have

PartSurj(G,H) = Hom(G,H)−
∑

F <H

PartSurj(G,F ) , (13)

where the sum is over all labeled subgraphs F of H that are distinct from H and obtained
by deleting some marked vertices and edges. Since the graphs F are strictly smaller than H,
this inductively proves that PartSurj(G,H) can be written as a linear combination:

PartSurj(G,H) =
∑

F

αF Hom(G,F ) . (14)

It is immediate that αH = 1 and αF < 0 holds for all F obtained by deleting a single marked
edge, since only the first step in the induction contributes to these coefficients. J

Using Lemma 13 in combination with Theorem 5, we obtain the classification for partially
surjective homomorphisms.

Proof of Theorem 4. By Lemma 13, there exists a quantum graph F with constituents
from D(H) such that PartSurj(G,H) = Hom(G,F ). It follows that PartSurj(?,H) and
Hom(?, F ) are the same problem.

Recall the notions of hom-easy and hom-hard graphs from Section 4. If every graph
F ∈ D(H) is hom-easy, then Hom(?, F ) is polynomial-time solvable. Otherwise, there are
hom-hard graphs F ∈ D(H), and it only remains to find one with αF 6= 0 in order for
Theorem 5 to yield the hardness of Hom(?, F ).

If H itself is hom-hard, then we pick F = H and obtain αF 6= 0 by Lemma 13. Otherwise,
H is hom-easy, so every connected component of H is a K◦q or a Ka,b. We check that only
one marked edge e∗ needs to be deleted from H to obtain a hom-hard graph F ∈ D(H):

If H contains a component C with marked edges and C = K◦q for q ≥ 3 or C = Ka,b for
a, b > 1, we can choose e∗ to be any marked edge in C.
If H contains a component C = K◦2 with at least one marked self-loop, we can choose e∗
to be any marked self-loop in C.

If neither of these conditions applies to H, then it can be checked that D(H) contains
only hom-easy graphs. Thus, if D(H) contains any hom-hard graphs at all, then there is an
edge e∗ such that F = H − e∗ is hom-hard. Lemma 13 then implies αF 6= 0, so Theorem 5
gives hardness of Hom(?, F ). J

Now Theorem 3 can be easily rederived from Theorem 4 as follows.

Proof of Theorem 3. We have VertSurj(?,H) = PartSurj(?,H) where all vertices of H are
marked but none of its edges. If H is a disjoint union of complete bipartite graphs and
reflexive complete graphs, then all of its induced subgraphs are also of this type. Thus
VertSurj(?,H) is polynomial-time computable by Theorem 4. On the other hand, if H is not
of this type, then VertSurj(?,H) is #P-hard by Theorem 4.

We have Comp(?,H) = PartSurj(?,H) where all vertices and non-loop edges of H are
marked. If H is a disjoint union of irreflexive stars and reflexive complete graphs of size at
most two, then deleting vertices or non-loop edges of H again yields a graph of this type.
Thus Comp(?,H) is polynomial-time computable by Theorem 4. On the other hand, if H is
not of this type, then a non-loop edge can be deleted to obtain a graph H ′ that contains
a connected component that is neither a reflexive clique nor an irreflexive biclique. But
then Comp(?,H) is #P-hard by Theorem 4. J
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6 Conclusion

We consider Theorem 2 as an initial step towards a fine-grained understanding of general
#CSP problems, and we believe that our shortened proof can be used to simplify and
strengthen other dichotomy results for #CSP following in the wake of Dyer and Greenhill’s
seminal result [16]. Techniques based on quantum graphs might also advance the state of
the art for open problems regarding approximate and modular homomorphism counting.

An interesting open problem is to improve Theorem 2 to more precise running time
bounds under the strong exponential-time hypothesis. Doing so however is challenging,
as non-trivial improvements upon the running time O(kn) are possible for some #P-hard
patterns H. For example, Björklund et al. [1] prove that the number of proper k-colorings,
which is equal to Hom(G,Kk), can be computed in time 2n · nO(1) for any k ∈ N.
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Note that in this setting, the graphs on both left-hand side and right-hand side are required
to be irreflexive. We will show later how to drop the requirement on the right-hand side.
Lemma 14 can be obtained as a corollary to Lemma 4.2 in [2] as follows.

Proof of Lemma 14. Let H = {H1, . . . ,Hk} and let S ⊇ H be some finite set of pairwise
non-isomorphic irreflexive graphs that is closed under surjective homomorphisms. Lemma 4.2
in [2] now states that the (|S| × |S|)-matrix Hom(S,S) is invertible. Thus the (|S| × k)-
submatrix Hom(S,H) has full rank k, and there exists a size-k subset F = {F1, . . . , Fk} ⊆ S
such that the (k× k)-matrix Hom(F ,H) is invertible. This is exactly the matrix M , and the
claim follows. J

I Remark 15. In general, it is not possible to choose {F1, . . . , Fk} = {H1, . . . ,Hk} in
Lemma 14, see [27, Exercise 5.46].

We now extend Lemma 14 to the asymmetric situation where the graphs H on the right
may have loops, but the graphs F on the left must not. That is, the homomorphism vector
(Hom(F,H))F determines the isomorphism type of H even when F ranges only over graphs
that do not have loops. As in Lemma 14, we in fact show these vectors to be linearly
independent. We remark that the reverse statement is false, since Hom(F,H) = 0 holds
whenever F contains a loop while H does not.

For our proof, we use a property of the tensor product of graphs, as defined in Definition 7.
Namely, while two isomorphic graphs H,H ′ lead to isomorphic graphs H ⊗A and H ′ ⊗A
for any graph A, the converse is not generally true. However, if A is not bipartite (and in
particular, if A is a triangle), then the converse does hold, see [27, Theorem 5.37].

I Lemma 16. If H,H ′ are non-isomorphic unweighted graphs that may contain self-loops,
then H ⊗K3 and H ′ ⊗K3 are non-isomorphic as well.

With these preliminaries at hand, we can prove Lemma 6.

Proof of Lemma 6. Let H1, . . . ,Hk be pairwise non-isomorphic graphs that may contain
loops. We must show that there exist irreflexive graphs F1, . . . , Fk such that the (k×k)-matrix
A with A[i, j] = Hom(Fi, Hj) is invertible.

By Lemma 16, the graphs H1 ⊗K3, . . . ,Hk ⊗K3 are pairwise non-isomorphic. More-
over, they are irreflexive, since K3 is irreflexive. Since the graphs Hj ⊗ K3 are pair-
wise non-isomorphic irreflexive graphs, their Hom-columns over irreflexive graphs are lin-
early independent by Lemma 14. More precisely, there are irreflexive graphs F1, . . . , Fk

such that the (k × k)-matrix M with M [i, j] = Hom(Fi, Hj ⊗ K3) is invertible. Note
that M [i, j] = A[i, j] ·Hom(Fi,K3) holds by (3). Since M is invertible, it does not have any
all-0 rows, and in particular Hom(Fi,K3) 6= 0 holds for all i ∈ {1, . . . , k}. Since A is obtained
from the invertible matrix M by multiplying each row with a non-zero scalar 1/Hom(Fi,K3),
the matrix A is invertible as well. J
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