
Counting Answers to Unions of Conjunctive Queries: Natural

Tractability Criteria and Meta-Complexity∗

Jacob Focke
CISPA Helmholtz Center for Information Security

Saarbrücken

Germany

Leslie Ann Goldberg
Department of Computer Science

University of Oxford

United Kingdom

Marc Roth
School of Electronic Engineering and Computer Science

Queen Mary University of London

United Kingdom

Stanislav Živný
Department of Computer Science

University of Oxford

United Kingdom

19 March 2024

Abstract

We study the problem of counting answers to unions of conjunctive queries (UCQs)
under structural restrictions on the input query. Concretely, given a class C of UCQs, the
problem #UCQ(C) provides as input a UCQ Ψ ∈ C and a database D and the problem
is to compute the number of answers of Ψ in D.

Chen and Mengel [PODS’16] have shown that for any recursively enumerable class C,
the problem #UCQ(C) is either fixed-parameter tractable or hard for one of the paramet-
erised complexity classes W[1] or #W[1]. However, their tractability criterion is unwieldy
in the sense that, given any concrete class C of UCQs, it is not easy to determine how
hard it is to count answers to queries in C. Moreover, given a single specific UCQ Ψ, it
is not easy to determine how hard it is to count answers to Ψ.

In this work, we address the question of finding a natural tractability criterion: The
combined conjunctive query of a UCQ Ψ = φ1 ∨ · · · ∨φℓ is the conjunctive query ∧ (Ψ) =
φ1∧· · ·∧φℓ. We show that under natural closure properties of C, the problem #UCQ(C) is
fixed-parameter tractable if and only if the combined conjunctive queries of UCQs in C,
and their contracts, have bounded treewidth. A contract of a conjunctive query is an
augmented structure, taking into account how the quantified variables are connected to
the free variables — if all variables are free, then a conjunctive query is equal to its
contract; in this special case the criterion for fixed-parameter tractability of #UCQ(C)
thus simplifies to the combined queries having bounded treewidth.

Finally, we give evidence that a closure property on C is necessary for obtaining a
natural tractability criterion: We show that even for a single UCQ Ψ, the meta problem
of deciding whether #UCQ({Ψ}) can be solved in time O(|D|d) is NP-hard for any fixed
d ≥ 1. Moreover, we prove that a known exponential-time algorithm for solving the meta
problem is optimal under assumptions from fine-grained complexity theory. As a corollary
of our reduction, we also establish that approximating the Weisfeiler-Leman-Dimension
of a UCQ is NP-hard.

∗For the purpose of Open Access, the authors have applied a CC BY public copyright licence to any Author
Accepted Manuscript version arising from this submission. All data is provided in full in the results section of
this paper. Stanislav Živný was supported by UKRI EP/X024431/1.

1

1 Introduction

Conjunctive queries are among the most fundamental and well-studied objects in database
theory [2,21,48,49,62,63]. A conjunctive query (CQ) φ with free variables X = {x1, . . . , xk}
and quantified variables Y = {y1, . . . , yd} is of the form

φ(X) = ∃Y R1(t1) ∧ . . . ∧Rn(tn),

where R1, . . . , Rn are relational symbols and each ti is a tuple of variables from X ∪ Y . A
database D consists of a set of elements U(D), denoted the universe of D, and a set of relations
over this universe. The corresponding relation symbols are the signature of D. If R1, . . . , Rn

are in the signature of D then an answer of φ in D is an assignment a : X → U(D) that
has an extension to the existentially quantified variables Y that agrees with all the relations
R1, . . . , Rn. Even more expressive is a union of conjunctive queries (UCQ). Such a union is
of the form

Ψ(X) = φ1(X) ∨ . . . ∨ φℓ(X),

where each φi(X) is a CQ with free variables X. An answer to Ψ is then any assignment that
is answer to at least one of the CQs in the union.

Since evaluating a given CQ on a given database is NP-complete [21] a lot of research
focused on finding tractable classes of CQs. A fundamental result by Grohe, Schwentick, and
Segoufin [43] established that the tractability of evaluating all CQs of bounded arity whose
Gaifman graph is in some class of graphs C depends on whether or not the treewidth in C is
bounded.

More generally, finding an answer to a conjunctive query can be cast as finding a (partial)
homomorphism between relational structures, and therefore is closely related to the framework
of constraint satisfaction problems. In this setting, Grohe [41] showed that treewidth modulo
homomorphic equivalence is the right criterion for tractability. There is also an important line
of work [39, 42, 51] culminating in the fundamental work by Marx [52] that investigates the
parameterised complexity for classes of queries with unbounded arity. In general, tractability
of conjunctive queries is closely related to how “tree-like” or close to acyclic they are.

Counting answers to CQs has also received significant attention in the past [3, 23, 29, 31,
32, 40, 57]. Chen and Mengel [22] gave a complete classification for the counting problem
on classes of CQs (with bounded arity) in terms of a natural criterion loosely based on
treewidth. They present a trichotomy into fixed-parameter tractable, W[1]-complete, and
#W[1]-complete cases. In subsequent work [23], this classification was extended to unions
of conjunctive queries (and to even more general queries in [31]). However, for UCQs, the
established criteria for tractability and intractability are implicit (see [23, Theorems 3.1 and
3.2]) in the sense that, given a specific UCQ Ψ, it is not at all clear how hard it is to count
answers to Ψ based on the criteria in [23]. To make this more precise: It is not even clear
whether we can, in polynomial time in the size of Ψ, determine whether answers to Ψ can be
counted in linear time in the input database.

1.1 Our contributions

With the goal of establishing a more practical tractability criterion for counting answers to
UCQs, we explore the following two main questions in this work:

2

Q1) Is there a natural criterion that captures the fixed-parameter tractability of
counting answers to a class of UCQs, parameterised by the size of the query?

Q2) Is there a natural criterion that captures whether counting answers to a single
fixed UCQ is linear-time solvable (in the size of a given database)?

Question Q1): Fixed-Parameter Tractability. For a class C of UCQs, we consider the
problem #UCQ(C) that takes as input a UCQ Ψ from C and a database D, and asks for
the number ans(Ψ → D) of answers of Ψ in D. We assume that the arity of the UCQs in C
is bounded, that is, there is constant c such that each relation that appears in some query in
C has arity at most c. As explained earlier, due to a result of Chen and Mengel [23], there
is a known but rather unwieldy tractability criterion for #UCQ(C), when the problem is
parameterised by the size of the query. On a high level, the number of answers of a UCQ
Ψ in a given database can be expressed as a finite linear combination of CQ answer counts,
using the principle of inclusion-exclusion. This means that

ans(Ψ→ D) =
∑
i

ci · ans(φi → D),

where each φi is simply a conjunctive query (and not a union thereof). We refer to this linear
combination as the CQ expansion of Ψ. Chen and Mengel showed that the parameterised
complexity of computing ans(Ψ → D) is guided by the hardest term in the respective CQ
expansion. The complexity of computing these terms is simply the complexity of counting the
answers of a conjunctive query, and this is well understood [22]. Hence, the main challenge for
this approach is to understand the linear combination, i.e., to understand for which CQs the
corresponding coefficients are non-zero. The problem is that the coefficients ci of these linear
combinations are alternating sums, which in similar settings have been observed to encode
algebraic and even topological invariants [59]. This makes it highly non-trivial to determine
which CQs actually contribute to the linear combination. We introduce the concepts required
to state this classification informally, the corresponding definitions are given in Section 2.

We first give more details about the result of [22]. Let Γ(C) be the class of those con-
junctive queries that contribute to the CQ expansion of at least one UCQ in C, and that
additionally are what we call #minimal. Intuitively, a conjunctive query φ is #minimal if
there is no proper subquery φ′ of φ that has the same number of answers as φ in every given
database. Then the tractability criterion depends on the treewidth of the CQs in Γ(C). It
also depends on the treewidth of the corresponding class contract(Γ(C)) of contracts (formally
defined in Definition 20), which is an upper bound of what is called the “star size” in [32]
and the “dominating star size” in [31]. Here is the formal statement of the known dichotomy
for #UCQ(C).

Theorem 1 ([23]). Let C be a recursively enumerable class of UCQs of bounded arity. If
the treewidth of Γ(C) and of contract(Γ(C)) is bounded, then #UCQ(C) is fixed-parameter
tractable. Otherwise, #UCQ(C) is W[1]-hard.

We investigate under which conditions this dichotomy can be simplified. We show that for
large classes of UCQs there is actually a much more natural tractability criterion that does not
rely on Γ(C), i.e., here the computation of the coefficients of the linear combinations as well as
the concept of #minimality do not play a role. We first show a simpler classification for UCQs

3

without existential quantifiers. To state the results we require some additional definitions:
The combined query ∧ (Ψ) of a UCQ Ψ(X) = φ1(X) ∨ · · · ∨ φℓ(X) is the conjunctive query
obtained from Ψ by replacing each disjunction by a conjunction, that is

∧ (Ψ) = φ1(X) ∧ · · · ∧ φℓ(X) .

Given a class of UCQs C, we set ∧ (C) = {∧ (Ψ) | Ψ ∈ C}.
It will turn out that the structure of the class of combined queries ∧ (C) determines the

complexity of counting answers to UCQs in C, given that C has the following natural closure
property: We say that C is closed under deletions if, for all Ψ(X) = φ1(X)∨ · · · ∨φℓ(X) and
for every J ⊆ [ℓ], the subquery

∨
j∈J φj(X) is also contained in C. For example, any class of

UCQs defined solely by the conjunctive queries admissible in the unions (such as unions of
acyclic conjunctive queries) is closed under deletions. The following classification resolves the
complexity of counting answers to UCQs in classes that are closed under deletions; we will see
later that the closedness condition is necessary. Moreover, the tractability criterion depends
solely on the structure of the combined query, and not on the terms in the CQ expansion,
thus yielding, as desired, a much more concise and natural characterisation. As mentioned
earlier, we first state the classification for quantifier-free UCQs.

Theorem 2. Let C be recursively enumerable class of quantifier-free UCQs of bounded arity.
If ∧ (C) has bounded treewidth then #UCQ(C) is fixed-parameter tractable. If ∧ (C) has
unbounded treewidth and C is closed under deletions then #UCQ(C) is W[1]-hard.

We emphasise here that Theorem 2 is in terms of the simpler object ∧ (C) instead of the
complicated object Γ(C).

If we allow UCQs with quantified variables in the class C then the situation becomes
more intricate. Looking for a simple tractability criterion that describes the complexity of
#UCQ(C) solely in terms of ∧ (C) requires some additional effort. First, for a UCQ Ψ
that has quantified variables, contract(Ψ) is not necessarily the same as Ψ, and therefore the
treewidth of the contracts also plays a role. Moreover, the matching lower bound requires
some conditions in addition to being closed under deletions. Nevertheless, our result is in
terms of the simpler objects ∧ (C) and contract(∧ (C)) rather than the more complicated
Γ(C) and contract(Γ(C)). For Theorem 3, recall that a conjunctive query is self-join-free if
each relation symbol occurs in at most one atom of the query.

Theorem 3. Let C be a recursively enumerable class of UCQs of bounded arity. If ∧ (C) and
contract(∧ (C)) have bounded treewidth then #UCQ(C) is fixed-parameter tractable. Other-
wise, if (I)–(III) are satisfed, then #UCQ(C) is W[1]-hard.

(I) C is closed under deletions.

(II) The number of existentially quantified variables of queries in C is bounded.

(III) The UCQs in C are unions of self-join-free conjunctive queries.

In Appendix A we show that Theorem 3 is tight in the sense that, if any of these conditions
is dropped, there are counterexamples to the claim that tractability is guided solely by ∧ (C)
and contract(∧ (C)).

4

Question Q2): Linear-Time Solvability. Now we turn to the question of linear-time
solvability for a single fixed UCQ. The huge size of databases in modern applications motivates
the question of which query problems are actually linear-time solvable. Along these lines, there
is a lot of research for enumeration problems [8, 11,12,15,20,63].

The question whether counting answers to a conjunctive query φ can be achieved in time
linear in the given database has been studied previously [53]. The corresponding dichotomy
is well known and was discovered multiple times by different authors in different contexts.1

In these results, the tractability criterion is whether φ is acyclic, i.e., whether it has a join
tree (see [38]). The corresponding lower bounds are conditioned on a widely used complexity
assumption from fine-grained complexity, namely the Triangle Conjecture. We define all of
the complexity assumptions that we use in this work in Section 2. There we also formally
define the size of a database (as the sum of the size of its signature, its universe, and its
relations).

It is well-known that, counting answers to quantifier-free conjunctive queries can be done
in linear time if and only if the query is acyclic. The “only if” part relies on hardness
assumptions from fine-grained complexity theory. Concretely, we have

Theorem 4 (See Theorem 12 in [17], and [7, 8, 11]). Let φ be a quantifier-free conjunctive
query and suppose that the Triangle Conjecture is true. Then the number of answers of φ in
a given database D can be computed in time linear in the size of D if and only if φ is acyclic.

We note that the previous theorem is false if quantified variables were allowed as this
would require the consideration of semantic acyclicity2 (see [10]).

Theorem 4 yields an efficient way to check whether counting answers to a quantifier-free
conjunctive query φ can be done in linear time: Just check whether φ is acyclic (in poly-
nomial time, see for instance [38]). We investigate the corresponding question for unions of
conjunctive queries. In stark contrast to Theorem 4, we show that there is no efficiently com-
putable criterion that determines the linear-time tractability of counting answers to unions
of conjunctive queries, unless some conjectures of fine-grained complexity theory fail.

We first observe that, as in the investigation of question Q1), one can obtain a criterion
for linear-time solvability by expressing UCQ answer counts as linear combinations of CQ
answer counts. Concretely, by a straightforward extension of previous results, we show that,
assuming the Triangle Conjecture, a linear combination of CQ answer counts can be computed
in linear time if and only if the answers to each #minimal CQ in the linear combination can
be computed in linear time, that is, if each such CQ is acyclic. However, this criterion is
again unwieldy in the sense that, for all we know, it may take time exponential in the size of
the respective UCQ to determine whether this criterion holds.

In view of our results for question Q1) about fixed-parameter tractability, one might
suspect that a more natural and simpler tractability criterion exists. However, it turns out
that even under strong restrictions on the UCQs that we consider, an efficiently computable
criterion is unlikely. We make this formal by studying the following meta problem.3

1We remark that [11, Theorem 7] focuses on the special case of graphs and near linear time algorithms.
However, in the word RAM model with O(logn) bits, a linear time algorithm is possible [20].

2A conjunctive query is semantically acyclic if and only if its #core (Definition 19) is acyclic.
3For the question Q1), considering a similar meta problem is not feasible as, in this case, the meta problem

takes as input a class of graphs. If such a class were encoded as a Turing machine, the meta problem would
be undecidable by Rice’s theorem.

5

Name: Meta
Input: A union Ψ of quantifier-free conjunctive queries.
Output: Is it possible to count answers to Ψ in time linear in the size of D.

Restricting the input of Meta to quantifier-free queries is sensible as, without this restric-
tion, the meta problem is known to be NP-hard even for conjunctive queries: If all variables
are existentially quantified, then evaluating a conjunctive query can be done in linear time
if and only if the query is semantically acyclic [63] (the “only if” relies on standard hard-
ness assumptions). However, verifying whether a conjunctive query is semantically acyclic is
already NP-hard [10]. In contrast, when restricted to quantifier-free conjunctive queries, the
problem Meta is polynomially-time solvable according to Theorem 4.

We can now state our main result about the complexity of Meta. The hardness results
hold under substantial additional input restrictions, which make these results stronger.

Theorem 5. Meta can be solved in time 2O(ℓ) · |Ψ|poly(log |Ψ|), where ℓ is the number of
conjunctive queries in the union, if the Triangle Conjecture is true. Moreover,

• If the Triangle Conjecture is true then Meta is NP-hard. If, additionally, ETH is true,
then Meta cannot be solved in time 2o(ℓ).

• If SETH is true then Meta is NP-hard and cannot be solved in time 2o(ℓ).

• If the non-uniform ETH is true then Meta is NP-hard and Meta /∈
⋂

ε>0DTime(2ε·ℓ).

The lower bounds remain true even if Ψ is a union of self-join-free and acyclic conjunctive
queries over a binary signature (that is, of arity 2).

We make some remarks about Theorem 5. First, it may seem counterintuitive that the
algorithmic part of this result relies on some lower bound conjectures. This is explained by the
fact that an algorithmic result for Meta is actually a classification result for the underlying
counting problem. The lower bound conjectures are the reason that the algorithm for Meta
can answer that a linear-time algorithm is not possible for certain UCQs.

Second, while for counting the answers to a CQ in linear time the property of being
acyclic is the right criterion, note that for unions of CQs, acyclicity is not even sufficient for
tractability. Even when restricted to unions of acyclic conjunctive queries, the meta problem
is NP-hard.

Third, we elaborate on the idea that we use to prove Theorem 5. As mentioned before,
the algorithmic part of Theorem 5 comes from the well-known technique of expressing UCQ
answer counts in terms of linear combinations of CQ answer counts, and establishing a cor-
responding complexity monotonicity property, see Section 2.4. The more interesting result is
the hardness part. Here we discover a connection between the meta question stated in Meta,
and a topological invariant, namely, the question whether the reduced Euler characteristic of
a simplicial complex is non-zero. It is known that simplicial complexes with non-vanishing
reduced Euler characteristic are evasive, and as such this property is also related to Karp’s
Evasiveness Conjecture (see e.g. the excellent survey of Miller [54]). We use the known fact
that deciding whether the reduced Euler characteristic is vanishing is NP-hard [60]. Roughly,
the reduction works as follows. Given some simplicial complex ∆, we carefully define a UCQ
Ψ∆ in such a way that only one particular term in the CQ expansion of Ψ∆ determines the

6

linear-time tractability of counting answers to Ψ∆. However, the coefficient of this term is
zero precisely if the reduced Euler characteristic of ∆ is vanishing.

Simplicial complexes also appeared in a related context in a work by Roth and Schmitt [59].
They show a connection between the complexity of counting induced subgraphs that fulfil
some graph property and the question whether a simplicial complex associated with this
graph property is non-zero. To solve their problem, it suffices to consider simplicial graph
complexes, which are special simplicial complexes whose elements are subsets of the edges of a
complete graph, and to encode these as induced subgraph counting problems. In contrast, to
get our result we must encode arbitrary abstract simplicial complexes as UCQs and to show
how to transfer the question about their Euler characteristic to a question about linear-time
solvability of UCQs.

It turns out that, as additional consequences of our reduction in the proof of Theorem 5,
we also obtain lower bounds for (approximately) computing the so-called Weisfeiler-Leman-
dimension of a UCQ.

Consequences for the Weisfeiler-Leman-dimension of quantifier-free UCQs Dur-
ing the last decade we have witnessed a resurge in the study of the Weisfeiler-Leman-
dimension of graph classes and graph parameters [4, 9, 30, 37, 47, 55]. The Weisfeiler-Leman
algorithm (WL-algorithm) and its higher-dimensional generalisations are important heurist-
ics for graph isomorphism; for example, the 1-dimensional WL-algorithm is equivalent to
the method of colour-refinement. We refer the reader to e.g. the EATCS Bulletin article of
Arvind [4] for a concise and self-contained introduction; however, in this work we will use the
WL-algorithm only in a black-box manner.

For each positive integer k, we say that two graphs G1 and G2 are k-WL equivalent,
denoted by G1

∼=k G2, if they cannot be distinguished by the k-dimensional WL-algorithm.
A graph parameter π is called k-WL invariant if G1

∼=k G2 implies π(G1) = π(G2). Moreover,
the WL-dimension of π is the minimum k for which π is k-WL invariant, if such a k exists,
and∞ otherwise (see e.g.[5]). The WL-dimension of a graph parameter π provides important
information about the descriptive complexity of π [18]. Moreover, recent work of Morris
et al. [55] shows that the WL-dimension of a graph parameter lower bounds the minimum
dimension of a higher-order Graph Neural Network that computes the parameter.

The definitions of the WL-algorithm and the WL-dimension extend from graphs to labelled
graphs, that is, directed multi-graphs with edge- and vertex-labels (see e.g. [50]). Formally,
we say that a database is a labelled graph if its signature has arity at most 2, and if it contains
no self-loops, that is, tuples of the form (v, v). Similarly, (U)CQs on labelled graphs have
signatures of arity at most 2 and contain no atom of the form R(v, v).

Definition 6 (WL-dimension). Let Ψ be a UCQ on labelled graphs. The WL-dimension
of Ψ, denoted by dimWL(Ψ), is the minimum k such that, for any pair of labelled graphs D1

and D2 with D1
∼=k D2, it holds that the number of answers to Ψ in D1 is the same as in D2.

If no such k exists, then the WL-dimension is ∞.

Note that a CQ is a special case of a UCQ, so Definition 6 also applies when Ψ is a CQ φ.
It was shown very recently that the WL-dimension of a quantifier-free conjunctive query

φ on labelled graphs is equal to the treewidth of the Gaifman graph of φ [50, 56]. Using
known algorithms for computing the treewidth [16,33] it follows that, for every fixed positive
integer d, the problem of deciding whether the WL-dimension of φ is at most d can be solved

7

in polynomial time (in the size of φ). Moreover, the WL-dimension of φ can be efficiently
approximated in polynomial time.

In stark contrast, we show that the computation of the WL-dimension of a UCQ is much
harder; in what follows, we say that S is an f -approximation of k if k ≤ S ≤ f(k) · k.

Theorem 7. There is an algorithm that computes a O(
√
log k)-approximation of the WL-

dimension k of a quantifier-free UCQ on labelled graphs Ψ = φ1∨· · ·∨φℓ in time |Ψ|O(1)·O(2ℓ).
Moreover, let f : Z>0 → Z>0 be any computable function. The problem of computing

an f -approximation of dimWL(Ψ) given an input UCQ Ψ = φ1 ∨ · · · ∨ φℓ is NP-hard, and,
assuming ETH, an f -approximation of dimWL(Ψ) cannot be computed in time 2o(ℓ).

Finally, the computation of the WL-dimension of UCQs stays intractable even if we fix k.

Theorem 8. Let k be any fixed positive integer. The problem of deciding whether the WL-
dimension of a quantifier-free UCQ on labelled graphs Ψ = φ1 ∨ · · · ∨ φℓ is at most k can be
solved in time |Ψ|O(1) ·O(2ℓ).

Moreover, the problem is NP-hard and, assuming ETH, cannot be solved in time 2o(ℓ).

1.2 Further Related Work

For exact counting it makes a substantial difference whether one wants to count answers
to a conjunctive query or a union of conjunctive queries [23, 31]. However, for approximate
counting, unions can generally be handled using a standard trick of Karp and Luby [46],
and therefore fixed-parameter tractability results for approximately counting the answers to
a conjunctive query also extend to unions of conjunctive queries [3, 35].

Counting and enumerating the answers to a union of conjunctive queries has also been
studied in the context of dynamic databases [13, 14]. This line of research investigates the
question whether linear-time dynamic algorithms are possible. Concretely, the question is
whether, after a preprocessing step that builds a data structure in time linear in the size of the
initial database, the number of answers to a fixed union of conjunctive queries can be returned
in constant time with a constant-time update to the data structure, whenever there is a change
to the database. Berkholz et al. show that for a conjunctive query such a linear-time algorithm
is possible if and only if the CQ is q-hierarchical [13, Theorem 1.3]. There are acyclic CQs that
are not q-hierarchical, for instance the query φ({a, b, c, d}) = E(a, b)∧E(b, c)∧E(c, d) is clearly
acyclic — however, the sets of atoms that contain b and c, respectively, are neither comparable
nor disjoint, and therefore φ is not q-hierarchical. So, there are queries for which counting in
the static setting is easy, whereas it is hard in the dynamic setting. Berkholz et al. extend
their result from CQs to UCQs [14, Theorem 4.5], where the criterion is whether the UCQ is
exhaustively q-hierarchical. This property essentially means that, for every subset of the CQs
in the union, if instead of taking the disjunction of these CQs we take the conjunction, then the
resulting CQ should be q-hierarchical. Moreover, checking whether a CQ ϕ is q-hierarchical
can be done in time polynomial in the size of ϕ. However, the straightforward approach of
checking whether a UCQ is exhaustively q-hierarchical takes exponential time, and it is stated
as an open problem in [14] whether this can be improved. In the dynamic setting this question
remains open — however, in the static setting we show that, while for counting answers to
CQs the criterion for linear-time tractability can be verified in polynomial time, this is not
true for unions of conjunctive queries, subject to some complexity assumptions, as we have
seen in Theorem 5.

8

2 Preliminaries

Due to the fine-grained nature of the questions we ask in this work (e.g. linear time counting vs
non-linear time counting), it is important to specify the machine model. We use the standard
word RAM model with O(log n) bits. The exact model makes a difference. For example,
it is possible to count answers to quantifier-free acyclic conjunctive queries in linear time in
the word RAM model [20], while Turing machines only achieve near linear time (or expected
linear time) [11].

2.1 Parameterised and Fine-grained Complexity Theory

A parameterised counting problem is a pair consisting of a function P : {0, 1}∗ → N and a
computable4 parameterisation κ : {0, 1}∗ → N. For example, in the problem #Clique the
function maps an input (a graph G and a positive integer k, encoded as a string in {0, 1}∗ to
the number of k-cliques in G. The parameter is K so κ(G, k) = k.

A parameterised counting problem (P, κ) is called fixed-parameter tractable (FPT) if there
is a computable function f and an algorithm A that, given input x, computes P (x) in time
f(κ(x)) · |x|O(1). We call A an FPT-algorithm for (P, κ).

A parameterised Turing-reduction from (P, κ) to (P ′, κ′) is an algorithm A equipped with
oracle access to P ′ that satisfies the following two constraints: (I) A is an FPT-algorithm for
(P, κ), and (II) there is a computable function g such that, when the algorithm A is run with
input x, every oracle query y to (P ′, κ′) has the property that the parameter κ′(y) is bounded
by g(κ(x)). We write (P, κ) ≤FPT (P ′κ′) if a parameterised Turing-reduction exists.

Evidence for the non-existence of FPT algorithms is usually given by hardness for the
parameterised classes #W[1] and W[1], which can be considered to be the parameterised
versions of #P and NP. The definition of those classes uses bounded-weft circuits, and
we refer the interested reader e.g. to the standard textbook of Flum and Grohe [34] for
a comprehensive introduction. For this work, it suffices to rely on the clique problem to
establish hardness for those classes: A parameterised counting problem (P, κ) is #W[1]-hard
if #Clique ≤FPT (P, κ), and it is W[1]-hard if Clique ≤FPT (P, κ), where Clique is the
decision version of #Clique, that is, given G and k, the task is to decide whether there is at
least one k-clique in G. As observed in previous works [22], if all variables are existentially
quantified, the problem of counting answers to a conjunctive query actually encodes a decision
problem. So it comes to no surprise that both complexity classes W[1] and #W[1] are relevant
for its classification. It is well known (see e.g. [24, 25, 28] that W[1]-hard and #W[1]-hard
problems are not fixed-parameter tractable, unless the Exponential Time Hypothesis fails.
This hypothesis is stated as follows.

Conjecture 9 (ETH [44]). 3-SAT cannot be solved in time exp(o(n)), where n denotes the
number of variables of the input formula.

We also rely on the Strong Exponential Time Hypothesis (SETH) and on a non-uniform
version of the Exponential Time Hypothesis, both of which are defined below.

4Some authors require the parameterisation to be polynomial-time computable; see the discussion in the
standard textbook of Flum and Grohe [34]. In this work, the parameter will always be the size of the input
query, which can clearly be computed in polynomial time.

9

Conjecture 10 (SETH [19, 44]). For each ε > 0 there exists a positive integer k such that
k-SAT cannot be solved in time O(2(1−ε)n), where n denotes the number of variables of the
input formula.

Conjecture 11 (Non-uniform ETH [26]). 3-SAT /∈
⋂

ε>0DTime(exp(εn)), where n denotes
the number of variables of the input formula.

Clearly, non-uniform ETH implies ETH. Moreover, it is well known that SETH implies
ETH via the Sparsification Lemma [45]. This proof also shows that SETH implies non-uniform
ETH, so we have the following lemma.

Lemma 12 ([45]). SETH ⇒ non-uniform ETH ⇒ ETH.

Finally, for ruling out linear-time algorithms, we will rely on the Triangle Conjecture:

Conjecture 13 (Triangle Conjecture [1]). There exists γ > 0 such that any (randomised)
algorithm that decides whether a graph with n vertices and m edges contains a triangle takes
time at least Ω(m1+γ) in expectation.

2.2 Structures, Homomorphisms, and Conjunctive Queries

A signature is a finite tuple τ = (R1, . . . , Rs) where each Ri is a relation symbol and comes
with an arity ai. The arity of a signature is the maximum arity of its relation symbols.
A structure A over τ consists of a finite universe U(A) and a relation RA

i of arity ai for
each relation symbol Ri of τ . As usual in relational algebra, we view databases as relational
structures. We encode a structure by listing its signature, its universe and its relations.
Therefore, given a structure A over τ , we set |A| = |τ |+ |U(A)|+

∑
R∈τ |RA| · aR, where aR

is the arity of R.
For example, a graph G is a structure over the signature (E) where E has arity 2. The

Gaifman graph of a structure A has as vertices the universe U(A) of A, and for each pair
of vertices u, v, there is an edge {u, v} in E if and only if at least one of the relations of A
contains a tuple containing both u and v. Note that the edge set E of a Gaifman graph is
symmetric and irreflexive.

Let A and B be structures over the same signature τ . Then A is a substructure of B if
U(A) ⊆ U(B) and, for each relation symbol R in τ , it holds that RA ⊆ RB ∩ U(A)a, where
a is the arity of R. A substructure is induced if, for each relation symbol R in τ , we have
RA = RB ∩ U(A)a. A substructure A of B with A ̸= B is a proper substructure of B. We
also define the union A ∪ B of two structures A and B as the structure over τ with universe
U(A)∪U(B) and RA∪B = RA ∪RB. Note that the union is well-defined even if the universes
are not disjoint.

Homomorphisms as Answers to CQs Let A and B be structures over signatures τA ⊆
τB. A homomorphism from A to B is a mapping h : U(A) → U(B) such that for each
relation symbol R ∈ τA with arity a and each tuple t⃗ = (t1, . . . , ta) ∈ RA we have that
h(⃗t) = (h(t1), . . . , h(ta)) ∈ RB. We use Hom(A → B) to denote the set of homomorphisms
from A to B, and we use the lower case version hom(A → B) to denote the number of
homomorphisms from A to B.

Let φ be a conjunctive query with free variables X = {x1, . . . , xk} and quantified variables
Y = {y1, . . . , yd}. We can associate φ with a structure Aφ defined as follows: The universe

10

of Aφ are the variables X ∪ Y and for each atom R(⃗t) of φ we add the tuple t⃗ to RA. It
is well-known that, for each database D, the set of answers of φ in D is precisely the set of
assignments a : X → U(D) such that there is a homomorphism h ∈ Hom(Aφ → D) with
h|X = a. Since working with (partial) homomorphisms will be very convenient in this work,
we will use the notation from [31] and (re)define a conjunctive query as a pair consisting of
a relational structure A together with a set X ⊆ U(A). The size of (A, X) is denoted by
|(A, X)| and defined to be |A|+ |X|. Furthermore, we define

Ans((A, X)→ D) := {a : X → U(D) | ∃h ∈ Hom(A → D) : h|X = a}
as the set of answers of (A, X) in D. We then use ans((A, X)→ D) to denote the number of
answers, i.e., ans((A, X)→ D) := |Ans((A, X)→ D)|.

We can now formally define the (parameterised) problem of counting answers to conjunct-
ive queries. As is usual, we restrict the problem by a class C of allowed queries.

Name: #CQ(C)
Input: A conjunctive query (A, X) ∈ C together with a database D.
Parameter: |(A, X)|.
Output: The number of answers ans((A, X)→ D).

Acyclicity and (Hyper-)Treewidth A structure of arity 2 is acyclic if its Gaifman graph
is acyclic. For higher arities, a structure is acyclic if it has a join-tree or, equivalently, if it
has (generalised) hyper-treewidth at most 1 (see [39]). We will not need the concept of
hyper-treewidth, but we refer the reader to [38] for a comprehensive treatment.

The treewidth of graphs and structures is defined as follows

Definition 14 (Tree decompositions, treewidth). Let G be a graph. A tree decomposition of
G is a pair (T,B), where T is a (rooted) tree, and B assigns each vertex t ∈ V (T) a bag Bt

such that the following constraints are satisfied:

(C1) V (G) =
⋃

t∈V (T)Bt,

(C2) For each edge e ∈ E(G) there exists t ∈ V (T) such that e ⊆ Bt, and

(C3) For each v ∈ V (G), the subgraph of T containing all vertices t with v ∈ Bt is connected.

The width of a tree decomposition is maxt∈V (T) |Bt|−1, and the treewidth of G is the minimum
width of any tree decomposition of G. Finally, the treewidth of a structure is the treewidth
of its Gaifman graph.

#Equivalence, #Minimality, and #Cores In the realm of decision problems, it is well
known that evaluating a conjunctive query is equivalent to evaluating the (homomorphic) core
of the query, i.e., evaluating the minimal homomorphic-equivalent query. A similar, albeit
slightly different notion of equivalence and minimality is required for counting answers to
conjunctive queries. In what follows, we will provide the necessary definitions and properties
of equivalence, minimality and cores for counting answers to conjunctive queries, and we refer
the reader to [23] and to the full version of [31] for a more comprehensive discussion. To avoid
confusion between the notions in the realms of decision and counting, we will from now on
use the # symbol for the counting versions (see Definition 16).

11

Definition 15. Two conjunctive queries (A, X) and (A′, X ′) are isomorphic, denoted by
(A, X) ∼= (A′, X ′), if there is an isomorphism b from A to A′ with b(X) = X ′.

Definition 16 (#Equivalence and #minimality (see [23, 31])). Two conjunctive queries
(A, X) and (A′, X ′) are #equivalent, denoted by (A, X) ∼ (A′, X ′), if for every database
D we have ans((A, X)→ D) = ans((A′, X ′)→ D). A conjunctive query (A, X) is #minimal
if there is no proper substructure A′ of A such that (A, X) ∼ (A′, X).

Observation 17. The following are equivalent:

1. A conjunctive query (A, X) is #minimal.

2. (A, X) has no #equivalent substructure that is induced by a set U with X ⊆ U ⊂ U(A).

3. Every homomorphism from A to itself that is the identity on X is surjective.

It turns out that #equivalence is the same as isomorphism if all variables are free, and it is
the same as homomorphic equivalence if all variables are existentially quantified (see e.g. the
discussion in Section 5 in the full version of [31]). Moreover, each quantifier-free conjunctive
query is #minimal.

Lemma 18 (Corollary 54 in full version of [31]). If (A, X) and (A′, X ′) are #minimal and
(A, X) ∼ (A′, X ′) then (A, X) ∼= (A′, X ′).

As isomorphism trivially implies #equivalence, Lemma 18 shows that, for #minimal quer-
ies, #equivalence and isomorphism coincide.

Definition 19 (#core). A #core of a conjunctive query (A, X) is a #minimal conjunctive
query (A′, X ′) with (A, X) ∼ (A′, X ′).

By Lemma 18, the #core is unique up to isomorphisms; in fact, this allows us to speak of
“the” #core of a conjunctive query.

Classification of #CQ(C) via Treewidth and Contracts It is well known that the
complexity of counting answers to a conjunctive query is governed by its treewidth, and by
the treewidth of its contract [22,31], which we define as follows.

Definition 20 (Contract). Let (A, X) be a conjunctive query, let Y = U(A) \X, and let G
be the Gaifmann graph of A. The contract of (A, X), denoted by contract(A, X) is obtained
from G[X] by adding an edge between each pair of vertices u and v for which there is a
connected component S in G[Y] that is adjacent to both u and v, that is, there are vertices
x, y ∈ S such that {x, u} ∈ E(G) and {y, v} ∈ E(G). Given a class of conjunctive queries C,
we write contract(C) for the class of all contracts of queries in C.

We note that there are multiple equivalent ways to define the contract of a query. For
our purposes, the definition in [31] is most suitable. Also, the treewidth of the contract of a
conjunctive query is an upper bound of what is called the query’s “star size” in [32] and its
“dominating star size” in [31].

Chen and Mengel established the following classification for counting answers to conjunct-
ive queries of bounded arity.

12

Theorem 21 ([22]). Let C be a recursively enumerable class of conjunctive queries of bounded
arity, and let C ′ be the class of #cores of queries in C. If the treewidth of C ′ and of
contract(C ′) is bounded, then #CQ(C) is solvable in polynomial time. Otherwise, #CQ(C)
is W[1]-hard.

We point out that the W[1]-hard cases can further be partitioned into W[1]-complete,
#W[1]-complete and even harder cases [22, 31].5 However, for the purpose of this work, we
are only interested in tractable and intractable cases (recall that W[1]-hard problems are not
fixed-parameter tractable under standard assumptions from fine-grained and parameterised
complexity theory, such as ETH).

Self-join-free Conjunctive Queries and Isolated Variables A conjunctive query (A, X)
is self-join-free if each relation of A contains at most one tuple. We say that a variable of a
conjunctive query is isolated if it is not part of any relation.

Note that that adding/removing isolated variables to/from a conjunctive query does not
change its treewidth or the treewidth of its #core. Further, it does not change the complexity
of counting answers: Just multiply/divide by nv, where n is the number of elements of the
database and v it the number of added/removed isolated free variables. For this reason, we
will allow ourselves in this work to freely add and remove isolated variables from the queries
that we encounter. For the existence of homomorphisms we also observe the following.

Observation 22. Let (A, X) be a conjunctive query, let X ′ be a superset of X and let A′ be
the structure obtained from A by adding an isolated variable for each x ∈ X ′ \X. Then for
all a : X ′ → U(D) we have that a|X ∈ Ans((A, X)→ D) iff a ∈ Ans((A′, X ′)→ D).

2.3 Unions of CQs and the Homomorphism Basis

A union of conjunctive queries (UCQ) Ψ is a tuple of structures (A1, . . . ,Aℓ(Ψ)) over the
same signature together with a set of designated elements X (the free variables) that are in
the universe of each of the structures. For each J ⊆ [ℓ(Ψ)], we define Ψ|J = ((Aj)j∈J , X). If
we restrict to a single term of the union then we usually just write Ψi instead of Ψ|{i}. Note
that Ψi = (Ai, X) is simply a conjunctive query (rather than a union of CQs).

We will assume (without loss of generality) that, for any distinct i and i′ in [ℓ(Ψ)], U(Ai)∩
U(Ai′) = X, i.e., that each CQ in the union has its own set of existentially quantified variables.

If each such conjunctive query is acyclic we say that Ψ is a union of acyclic conjunctive
queries. Moreover, the arity of Ψ is the maximum arity of any of the Ai. The size of Ψ is

|Ψ| =
∑ℓ(Ψ)

i=1 |Ψi|. The elements of X are the free variables of Ψ and ℓ(Ψ) is the number of
CQs in the union.

The set of answers of Ψ in a database D, denoted by Ans(Ψ→ D) is defined as follows:

Ans(Ψ→ D) = {a : X → U(D) | ∃i ∈ [ℓ] : a ∈ Ans(Ψi → D)} .

Again, we use the lower case version ans(Ψ→ D) to denote the number of answers of Ψ in D.
In the definition of UCQs we assume that every CQ in the union has the same set of free

variables, namely X. This assumption is without loss of generality. To see this, suppose that
we have a union of CQs (A1, X1), . . . , (Aℓ, Xℓ) with individual sets of free variables. Let X =⋃ℓ

i=1Xi and, for each i ∈ [ℓ], let A′
i be the structure obtained from Ai by adding an isolated

5Those cases are: #W[2]-hard and #A[2]-complete.

13

variable for each x ∈ X \ Xi. Then consider the UCQ Ψ := ((A′
1, . . . ,A′

ℓ), X). If for some
assignment a : X → U(D) it holds that there is an i ∈ [ℓ] such that a|Xi ∈ Ans((Ai, Xi)→ D).
Then, according to Observation 22, this is equivalent to a ∈ Ans((A′

i, X)→ D), which means
that a is an answer of Ψ. So, without loss of generality we can work with Ψ, which uses the
same set of free variables for each CQ in the union.

Now we define the parameterised problem of counting answers to UCQs. As usual, the
problem is restricted by a class C of allowed queries with respect to which we classify the
complexity.

Name: #UCQ(C)
Input: A UCQ Ψ ∈ C together with a database D.
Parameter: |Ψ|.
Output: The number of answers ans(Ψ→ D).

The next definition will be crucial for the analysis of the complexity of #UCQ(C).

Definition 23 (combined query ∧ (Ψ)). Let Ψ = ((A1, , . . . ,Aℓ), X) be a UCQ. Then we
define the combined query ∧ (Ψ) = (

⋃
j∈[ℓ]Aj , X).

What follows is an easy, but crucial observation about ∧ (Ψ|J).

Observation 24. Let ((A1, , . . . ,Aℓ), X) be a UCQ, and let ∅ ̸= J ⊆ [ℓ]. For each database
D and assignment a : X → U(D) we have

a ∈ Ans(∧ (Ψ|J)→ D)⇔ ∀j ∈ J : a ∈ Ans(Ψj → D).

Definition 25 (Coefficient function cΨ). Let Ψ = ((A1, , . . . ,Aℓ), X) be a UCQ. For each
conjunctive query (A, X), we set I(A, X) = {J ⊆ [ℓ] | (A, X) ∼ ∧ (Ψ|J)}, and we define the
coefficient function of Ψ as follows:

cΨ(A, X) =
∑

J∈I(A,X)

(−1)|J |+1 .

Using inclusion-exclusion, we can transform the problem of counting answers to Ψ into
the problem of evaluating a linear combination of CQ answer counts. We include a proof
only for reasons of self-containment and note that the complexity-theoretic applications of
this transformation, especially regarding lower bounds, have first been discovered by Chen
and Mengel [23].

Lemma 26 ([23]). Let Ψ = ((A1, , . . . ,Aℓ), X) be a UCQ. For every database D,

ans(Ψ→ D) =
∑
(A,X)

cΨ(A, X) · ans((A, X)→ D),

where the sum is over all equivalence classes of ∼.

Proof. By inclusion-exclusion and Observation 24,

ans(Ψ→ D) =
∑

∅≠J⊆[ℓ]

(−1)|J |+1 · |{a : X → U(D) | ∀j ∈ J : a ∈ Ans((Aj , X)→ D)}|

=
∑

∅≠J⊆[ℓ]

(−1)|J |+1 · ans(∧ (Ψ|J)→ D).

The claim then follows by collecting #equivalent terms.

14

We conclude this subsection with the following two operations on classes of UCQs.

Definition 27 (Γ(C) and ∧ (C)). Let C be a class of UCQs. Γ(C) is the class of all (A, X)
such that (A, X) is #minimal and there is Ψ ∈ C with cΨ(A, X) ̸= 0. Let ∧ (C) = {∧ (Ψ) |
Ψ ∈ C}.

2.4 Complexity Monotonicity

The principle of Complexity Monotonicity states that the computation of a linear combin-
ation of homomorphism counts is precisely as hard as computing its hardest term. It was
independently discovered by Curticapean, Dell and Marx [27] and by Chen and Mengel [23].
Moreover, Chen and Mengel established the principle in the more general context of linear
combinations of conjunctive queries. Formally, their result is stated below for the special case
of linear combinations derived via counting answers to UCQs (see Lemma 26). We include
a proof since we need to pay some special attention to running times, as we will also be
interested in the question of linear time tractability.

Theorem 28 (Implicitly by [23]). There is an algorithm A with the following properties:

1. The input of A is a UCQ Ψ and a database D.

2. A has oracle access to the function D′ 7→ ans(Ψ→ D′).

3. The output of A is a list with entries ((A, X), ans((A, X)→ D)) for each (A, X) in the
support of cΨ.

4. A runs in time f(|Ψ|) ·O(|D|) for some computable function f .

Proof. A crucial operation in the construction is the Tensor product of relational structures.
Let A and B be structures over the signatures τA and τB. The structure A ⊗ B is defined
as follows: The signature is τA ∩ τB, and the universe is U(A) × U(B). Moreover, for every
relation symbol R ∈ τA ∩ τB with arity r, a tuple ((u1, v1), . . . , (ur, vr)) is contained in RA⊗B

if and only if (u1, . . . , ur) ∈ RA and (v1, . . . , vr) ∈ RB.
Observe that A⊗ B is of size bounded by and can be computed in time O(|A||B|).6 The

algorithm A proceeds as follows. Let Ψ = ((A1, . . . ,Aℓ), X) be the input. For a selected set
of structures B1 . . . ,Bk, specified momentarily, the algorithm queries the oracle on the Tensor
products D ⊗ Bi. Using Lemma 26, this yields the following equations:

ans(Ψ→ D ⊗Bi) =
∑
(A,X)

cΨ(A, X) · ans((A, X)→ D ⊗Bi).

Next, we use the fact (see e.g. [23]) that the Tensor product is multiplicative with respect to
counting answers to conjunctive queries:

ans((A, X)→ D ⊗Bi) = ans((A, X)→ D) · ans((A, X)→ Bi).

In combination, the previous equations yield a system of linear equations:

ans(Ψ→ D ⊗Bi) =
∑
(A,X)

cΨ(A, X) · ans((A, X)→ D) · ans((A, X)→ Bi),

6Compute the Cartesian product of U(A) and U(B) and then, for every relation R ∈ τA ∩ τB iterate over
all pairs of tuples in RA and RB and add their point-wise product to RA⊗B.

15

the unknowns of which are cΨ(A, X) ·ans((A, X)→ D). Finally, it was shown in [23] and [31]
that it is always possible to find Bi for which the system is non-singular. Moreover, the
time it takes to find the Bi only depends on Ψ. Finally, solving the system yields the terms
cΨ(A, X) · ans((A, X) → D) from which we can recover ans((A, X) → D) by dividing by
cΨ(A, X). It can easily be observed that the overall running time is bounded by f(|Ψ|)·O(|D|)
for some computable function f , as required, which concludes the proof.

Corollary 29. Let Ψ be a UCQ. For each d ≥ 1, computing the function D 7→ ans(Ψ → D)
can be done in time O(|D|d) if and only if for each #minimal (A, X) with cΨ(A, X) ̸= 0 the
function D 7→ ans((A, X)→ D) can be computed in time O(|D|d).

Corollary 30 (Implicitly also in [23]). Let C be a recursively enumerable class of UCQs.
The problems #UCQ(C) and #CQ(Γ(C)) are interreducible with respect to parameterised
Turing-reductions.

As a consequence, in combination with Theorem 21, Chen and Mengel [23] established
the following dichotomy, which we can state in a convenient way using our notation:

Theorem 1 ([23]). Let C be a recursively enumerable class of UCQs of bounded arity. If
the treewidth of Γ(C) and of contract(Γ(C)) is bounded, then #UCQ(C) is fixed-parameter
tractable. Otherwise, #UCQ(C) is W[1]-hard.

In other words, as a summary of the above results, we know that counting answers to a
UCQ is hard if and only if a conjunctive query survives in the CQ expansion, whose #core has
either high treewidth or its contract has high treewidth. Unfortunately, given a concrete UCQ,
or a concrete class of UCQs, it is not clear how to determine whether such high treewidth
terms survive.

The central question that we ask in this work is whether this implicit tractability criterion
for counting answers to UCQs can be rephrased as a more natural one. Equivalently, this
means that we aim to find out whether there is a natural criterion for the existence of high
treewidth terms in the CQ expansion. Such natural criteria have been found for subgraph
and induced subgraph counting7 [27, 36], and for conjunctive queries with inequalities and
negations [31,58].

3 Classifications for Deletion-Closed UCQs

Let C be a class of UCQs. Recall that ∧ (C) is the class of all conjunctive queries that are
obtained just by substituting all ∨ by ∧ in UCQs in C, whereas Γ(C) in Theorem 1 is the
much less natural class of #minimal queries that survive with a non-zero coefficient in the
CQ expansion of a UCQ in C. The work of Chen and Mengel [23] implicitly also shows an
upper bound for counting answers to UCQs from the class C in terms of the simpler objects
∧ (C) and contract(∧ (C)), rather than in terms of the more complicated objects Γ(C) and
contract(Γ(C)). We include a proof for completeness.

Lemma 31. Let C be a recursively enumerable class of UCQs. Suppose that both ∧ (C) and
contract(∧ (C)) have bounded treewidth. Then #UCQ(C) is fixed-parameter tractable.

7(Induced) Subgraph counting is a special case of counting answers to quantifier-free conjunctive queries
with inequalities (and negations).

16

Proof. Let Ψ ∈ C. Recall from the proof of Lemma 26 that, for every databse D,

ans(Ψ→ D) =
∑

∅≠J⊆[ℓ]

(−1)|J |+1 · hom(∧ (Ψ|J)→ D) .

Hence #UCQ(C) ≤FPT #CQ(Ĉ) where Ĉ is {∧ (Ψ|J) | Ψ ∈ C ∧ ∅ ̸= J ⊆ [ℓ(Ψ)]}.
Finally, since ∧ (Ψ|J) is a subquery of ∧ (Ψ) for each J , the treewidths of ∧ (Ψ|J) and
contract(∧ (Ψ|J)) are bounded from above by the treewidths of ∧ (Ψ) and contract(∧ (Ψ)),
respectively. Consequently, the treewidths of Ĉ and contract(Ĉ) are bounded, and thus
#CQ(Ĉ) is polynomial-time solvable by the classification of Chen and Mengel [22, Theorem
22] Since #UCQ(C) ≤FPT #CQ(Ĉ), the lemma follows.

Our goal is to relate the complexity of #UCQ(C) to the structure of ∧ (C) with the hope
of obtaining a more natural tractability criterion than the one given by Theorem 1. While
we will see later that this seems not always possible (Appendix A), we identify conditions
under which a natural criterion based on ∧ (C) is possible, both in the quantifier-free case
(Section 3.1), and in the general case that allows quantified variables (Section 3.2).

A class of UCQs C is closed under deletions if, for every Ψ = ((A1, . . . ,Aℓ), X) ∈ C and
for every ∅ ̸= J ⊆ [ℓ], the UCQ Ψ|J is also contained in C. For example, any class of UCQs
defined by prescribing the allowed conjunctive queries is closed under deletions. This includes,
e.g., unions of acyclic conjunctive queries.

3.1 The Quantifier-free Case

As a warm-up, we start with the much simpler case of quantifier-free queries. Here, we only
allow (unions of) conjunctive queries (A, X) satisfying U(A) = X.

Lemma 32. Let C be a recursively enumerable class of quantifier-free UCQs of bounded arity.
Suppose that C is closed under deletions. If ∧ (C) has unbounded treewidth then #UCQ(C)
is W[1]-hard.

Proof. We show that ∧ (C) ⊆ Γ(C), which then proves the claim by Theorem 1. Recall from
Definition 27 that Γ(C) = {(A, X) | (A, X) is #minimal and there is Ψ ∈ C with cΨ(A, X) ̸=
0}. Let Ψ = ((A1, . . . ,Aℓ), X) ∈ C. Note that, according to Observation 17, ∧ (Ψ) is its own
#core since it does not have existentially quantified variables. For the same reason, for each
nonempty subset J of [ℓ], the query ∧ (Ψ|J) is its own #core. Now let J ⊆ [ℓ] be inclusion-
minimal with the property that ∧ (Ψ|J) is isomorphic to ∧ (Ψ). Since C is closed under
deletions, the UCQ Ψ|J is contained in C. By the inclusion-minimality of J , Definition 25
ensures that cΨ|J (∧ (Ψ)) = (−1)|J |+1 ̸= 0. As a consequence, ∧ (Ψ) ∈ Γ(C), concluding the
proof.

From Lemmas 32 and 31 together with the fact that the contract of a quantifier-free query
is the query itself, we obtain the classification for quantifier-free UCQs, which we restate for
convenience.

Theorem 2. Let C be recursively enumerable class of quantifier-free UCQs of bounded arity.
If ∧ (C) has bounded treewidth then #UCQ(C) is fixed-parameter tractable. If ∧ (C) has
unbounded treewidth and C is closed under deletions then #UCQ(C) is W[1]-hard.

17

3.2 The General Case

Now we consider UCQs with existentially quantified variables. Here, a corresponding hardness
result (Lemma 35) can be achieved under some additional assumptions. Note that the number
of existentially quantified variables in a UCQ Ψ = ((A1, . . . ,Aℓ), X) is equal to

∑ℓ
i=1 |U(Ai)\

X|. We first need the following two auxiliary results:

Lemma 33. Let (A, X) and (A′, X ′) be #equivalent conjunctive queries. Further, let G and
G′ be the Gaifman graphs of A and A′, respectively. Then G[X] and G′[X ′] are isomorphic.

Proof. By [23] (see Lemma 48 in the full version of [31] for an explicit statement), there are
surjective functions s : X → X ′ and s′ : X ′ → X and homomorphisms h ∈ Hom(A → A′)
and h′ ∈ Hom(A′ → A) such that h|X = s and h′|X′ = s′.

Clearly, s and s′ are bijective. Let e = {u, v} be an edge of G[X]. Then there exists a
tuple t⃗ of elements of U(A) such that

(i) t⃗ ∈ RA for some relation (symbol) R of the signature of A, and

(ii) u and v are elements of t⃗.

Since h is a homomorphism, h(⃗t) ∈ RB. Thus {h(u), h(v)} = {s(u), s(v)} is an edge of G′[X ′].
The backward direction is analogous.

Lemma 34. Let (A, X) be a self-join-free conjunctive query. Let A′ be the structure obtained
from A by deleting all isolated variables in U(A) \X. Then (A′, X) is the #core of (A, X).

Proof. Clearly, (A, X) and (A′, X) are #equivalent. Thus it remains to show that (A′, X)
is #minimal. Assume for contradiction by Observation 17 that (A′, X) has an #equivalent
substructure Â that is induced by a set U with X ⊆ U ⊂ U(A′).

Since A′ is self-join-free and it does not have isolated variables, there is a relation (symbol)

R such that RA′
contains precisely one tuple, and RÂ is empty. Thus, there is no homomorph-

ism from A′ to Â and, consequently, (Â, X) and (A′, X) cannot be #equivalent, yielding a
contradiction and concluding the proof.

Lemma 35. Let C be a recursively enumerable class of unions of self-join-free conjunctive
queries with bounded arity. Suppose that C is closed under deletions and that there is a finite
upper bound on the number of existentially quantified variables in queries in C. If either of
∧ (C) or contract(∧ (C)) have unbounded treewidth then #UCQ(C) is W[1]-hard.

Proof. Let d be the maximum number of existentially quantified variables in a query in
C. Assume first that ∧ (C) has unbounded treewidth. We show that Γ(C) has unbounded
treewidth, which proves the claim by Theorem 1. To this end, let B be any positive integer.
The goal is to find a conjunctive query in Γ(C) with treewidth at least B. Since ∧ (C)
has unbounded treewidth, there is a UCQ Ψ = ((A1, . . . ,Aℓ), X) in C such that ∧ (Ψ)
has treewidth larger than d + B. Note that, although all Ψi are self-join-free, ∧ (Ψ) is
not necessarily self-join-free. Let J be inclusion-minimal among the subsets of [ℓ] with the
property that the #core of ∧ (Ψ|J) is isomorphic to the #core of ∧ (Ψ). Since C is closed
under deletions, the UCQ Ψ|J is contained in C. Let (A′, X ′) be the #core of ∧ (Ψ).

By inclusion-minimality of J , cΨ|J ((A
′, X ′)) = (−1)|J |+1 ̸= 0. As a consequence, (A′, X ′) ∈

Γ(C). It remains to show that the treewidth of (A′, X ′) is at least B. For this, let G be the

18

Gaifmann graph of ∧ (Ψ) and let G′ be the Gaifmann graph of the #core of ∧ (Ψ) (the Gaif-
man graph of A′). First, deletion of a vertex can decrease the treewidth by at most 1. Thus,
G[X] has treewidth at least d+B − d = B. By Lemma 33, G[X] and G′[X ′] are isomorphic.

Therefore the treewidth of G′[X ′], i.e., the treewidth of (A′, X ′), is at least B. So we have
shown that if the treewidth of ∧ (C) is unbounded then so is the treewidth of Γ(C).

In the second case, we assume that the contracts of queries in∧ (C) (see Definition 20) have
unbounded treewidth. We introduce the following terminology: Let (A, X) be a conjunctive
query and let y ∈ U(A). The degree of freedom of y is the number of vertices in X that
are adjacent to y in the Gaifman graph of A. Let Ĉ be the class of all conjunctive queries
(A, X) such that there exists Ψ = ((A1, . . . ,Aℓ(Ψ)), X) in C with (A, X) = (Ai, X) for some

i ∈ [ℓ(Ψ)]. Since C is closed under deletions, Ĉ ⊆ C. By the assumptions of the lemma, Ĉ
consists only of self-join-free queries. Thus, by Lemma 34, each query in Ĉ is its own #core
(up to deleting isolated variables). We will now consider the following cases:

(i) Suppose that Ĉ has unbounded degree of freedom. With Definition 20 it is straightfor-
ward to check that a quantified variable y with degree of freedom B induces a clique
of size B in the contract of the corresponding query. Therefore, the contracts of the
queries in Ĉ have unbounded treewidth. Consequently, #CQ(Ĉ) is W[1]-hard by the
classification of Chen and Mengel [22, Theorem 22]. Since Ĉ ⊆ C the problem #CQ(Ĉ)
is merely a restriction of #UCQ(C), the latter of which is thus W[1]-hard as well.

(ii) Suppose that the degree of freedom of queries in Ĉ is bounded by a constant d′. We
show that Γ(C) has unbounded treewidth, which proves the claim by Theorem 1. To
this end, let B be any positive integer. The goal is to find a conjunctive query in Γ(C)
with treewidth at least B. Since contract(∧ (C)) has unbounded treewidth, there is a
UCQ Ψ = (A1, . . . ,Aℓ), X) in C such that contract(∧ (Ψ)) has treewidth larger than

d+
(
dd′

2

)
+ B. We will show that ∧ (Ψ) has treewidth larger than d+ B, which, as we

have argued previously, implies that Γ(C) contains a query with treewidth at least B.
To prove that ∧ (Ψ) indeed has treewidth larger than d+B, let ∧ (Ψ) = (A, X) and let
G be the Gaifman graph of A. Let Y = U(A) \ X and recall from Definition 20 that
contract(A, X) is obtained from G[X] by adding an edge between any pair of vertices u
and v that are adjacent to a common connected component in G[Y]. Let N ⊆ X be the
set of all vertices in X that are adjacent to a vertex in Y and observe that |N | ≤ dd′

since the number of existentially quantified variables and the degree of freedom are
bounded by d and d′, respectively. Thus, contract(A, X) is obtained by adding at most(
dd′

2

)
edges to G[X]. The deletion of an edge can decrease the treewidth by at most 1,

so

tw(∧ (Ψ)) = tw(G) ≥ tw(G[X]) ≥ tw(contract(A, X))−
(
dd′

2

)
> d+B ,

which concludes Case (ii).

With all cases concluded, the proof is completed.

From Lemmas 31 and 35 we directly obtain the main result of this section, which we
restate for convenience.

Theorem 3. Let C be a recursively enumerable class of UCQs of bounded arity. If ∧ (C) and
contract(∧ (C)) have bounded treewidth then #UCQ(C) is fixed-parameter tractable. Other-
wise, if (I)–(III) are satisfed, then #UCQ(C) is W[1]-hard.

19

(I) C is closed under deletions.

(II) The number of existentially quantified variables of queries in C is bounded.

(III) The UCQs in C are unions of self-join-free conjunctive queries.

Remark 36. It turns out that all side conditions of Theorem 3 are necessary if we aim
to classify #UCQ(C) solely via ∧ (C). To this end, we provide counter examples for each
missing condition in Appendix A.

4 The Meta Complexity of Counting Answers to UCQs

We consider the meta-complexity question of deciding whether it is possible to count the an-
swers of a given UCQ in linear time. As pointed out in the introduction, this problem is im-
mediately NP-hard even when restricted to conjunctive queries if we were to allow quantified
variables. Therefore, we consider quantifier-free UCQs in this section. Recall the definition
of Meta from Section 1.

Name: Meta
Input: A union Ψ of quantifier-free conjunctive queries.
Output: Is it possible to count answers to Ψ in time linear in the size of D, i.e., can the

function D 7→ ans(Ψ→ D) be computed in time O(|D|).

Since we focus in this section solely on quantifier-free queries, it will be convenient to
simplify our notation as follows. As all variables are free, we will identify a conjunctive query
φ just by its associated structure, that is, we will write φ = A, rather than φ = (A, U(A)).
Similarly, we represent a union of quantifier-free conjunctive queries Ψ as a tuple of structures
Ψ = (A1, . . . ,Aℓ).

For studying the complexity of Meta, it will be crucial to revisit the classification of
linear-time counting of answers to quantifier-free conjunctive queries: The following theorem
is well known and was discovered multiple times by different authors in different contexts.8

This is Theorem 4 from the introduction, which we now restate in a version that expresses
CQs as structures.

Theorem 37 (See Theorem 12 in [17], and [7, 8, 11]). Let A be a quantifier-free conjunctive
query and suppose that the Triangle Conjecture and SETH is true. Then the function D 7→
hom(A → D) is computable in linear time if and only if A is acyclic.

Theorem 37 yields an efficient way to check whether counting answers to a quantifier-free
conjunctive query φ can be done in linear time: Just check whether φ is acyclic. In stark
contrast, we show that no easy criterion for linear time tractability of counting answers to
unions of conjunctive queries is possible, unless some conjectures of fine-grained complexity
theory fail. In fact, our Theorem 5, which we restate here for convenience, precisely determines
the complexity of Meta.

Theorem 5. Meta can be solved in time 2O(ℓ) · |Ψ|poly(log |Ψ|), where ℓ is the number of
conjunctive queries in the union, if the Triangle Conjecture is true. Moreover,

8We remark that [11, Theorem 7] focuses on the special case of graphs and near linear time algorithms.
However, in the word RAM model with O(logn) bits, a linear time algorithm is possible [20].

20

• If the Triangle Conjecture is true then Meta is NP-hard. If, additionally, ETH is true,
then Meta cannot be solved in time 2o(ℓ).

• If SETH is true then Meta is NP-hard and cannot be solved in time 2o(ℓ).

• If the non-uniform ETH is true then Meta is NP-hard and Meta /∈
⋂

ε>0DTime(2ε·ℓ).

The lower bounds remain true even if Ψ is a union of self-join-free and acyclic conjunctive
queries over a binary signature (that is, of arity 2).

The lower bounds in Theorem 5 imply that the exponential dependence on ℓ in our
2O(ℓ) ·|Ψ|poly(log |Ψ|) time algorithm forMeta cannot be significantly improved, unless standard
assumptions fail.

The remainder of this section is devoted to the proof of Theorem 5. It is split into two
parts: In the first and easier part (Section 4.1), we construct the algorithm forMeta. For this,
all we need to do is to translate the problem into the homomorphism basis (see Section 2.3),
i.e., we transform the problem of counting answers to Ψ into the problem of evaluating a
linear combination of terms, each of which can be determined by counting the answers to a
conjunctive query. This is done in Lemma 38. The second part (Section 4.2) concerns the
lower bounds and is more challenging. The overall strategy is as follows: In the first step,
we use a parsimonious reduction from 3-SAT to computing the reduced Euler Characteristic
of a complex. The parsimonious reduction is due to Roune and Sáenz-de-Cabezón [60]. In
combination with the Sparsification Lemma [45], this reduction becomes tight enough for our
purposes. In the second step, we show how to encode a complex ∆ into a union of acyclic
conjunctive queries Ψ such that the following is true: The reduced Euler Characteristic of
∆ is zero if and only if all terms in the homomorphism basis are acyclic. The lower bound
results of Theorem 5 are established in Lemmas 51, 52, and 53.

4.1 Solving Meta via Inclusion-Exclusion

Lemma 38. The problem Meta can be solved in time |Ψ|O(log |Ψ|) · 2O(ℓ), where ℓ is the
number of conjunctive queries in the union, if the Triangle Conjecture is true.

Proof. If the Triangle Conjecture is true, then Theorem 37 implies that counting answers to a
quantifier-free conjunctive query is solvable in linear time if and only if the query is acyclic. In
combination with Corollary 29 we obtain that counting answers to a UCQ Ψ = (A1, . . . ,Aℓ)
can be done in linear time if and only if each A with cΨ(A) ̸= 0 is acyclic.

Recall that #equivalence is the same as isomorphism for quantifier-free queries (Defini-
tion 16). By Definition 25,

cΨ(A) =
∑
J⊆[ℓ]

∧(Ψ|J)∼=A

(−1)|J |+1.

This suggests the following algorithm for Meta with input Ψ. For each subset J ⊆ [ℓ],
compute ∧ (Ψ|J). Afterwards, using Babai’s algorithm [6] collect the isomorphic terms and
compute cΨ(∧ (Ψ|J)) for each J ⊆ [ℓ] in time 2O(ℓ) · |Ψ|poly(log |Ψ|). Clearly, cΨ(A) = 0 for
every A that is not isomorphic to any ∧ (Ψ|J).

Finally, output 1 if each A with cΨ(A) ̸= 0 is acyclic (each of these checks can be done in
linear time [61]), and output 0 otherwise. The total running time of this algorithm is bounded
from above by 2O(ℓ) · |Ψ|poly(log |Ψ|).

21

Figure 1: Two complexes over the groundset Ω = {1, 2, 3, 4}. Let ∆1 be the complex shown
on the left. It has facets {2, 3, 4}, {1, 2}, {1, 3}, and {1, 4}. Let ∆2 be the complex shown on
the right, with facets {1, 2}, {2, 3}, {1, 3}, and {4}. The reduced Euler characteristic of these
complexes is computed as follows: Since ∆1 has one face of size 3 ({2, 3, 4}), 6 faces of size 2, 4
faces of size 1, and the empty set as face of size 0 it holds that χ̂(∆1) = −(−1+6−4+1) = −2.
Similarly, we have χ̂(∆2) = −(3− 4 + 1) = 0.

4.2 Fine-grained Lower bounds for Meta

For our hardness proof for Meta, we will construct a reduction from the computation of the
reduced Euler characteristic of an abstract simplicial complex. We begin by introducing some
central notions about (abstract) simplicial complexes.

4.2.1 Simplicial Complexes

A simplicial complex captures the geometric notion of an independence system. We will
use the corresponding combinatorial description, which is also known as abstract simplicial
complex, and defined as follows.

Definition 39. A complex (short for abstract simplicial complex) ∆ is a pair consisting of a
nonempty finite ground set Ω and a set of faces I ⊆ 2Ω that includes all singletons and is a
downset. That is, the set of faces I satisfies the following criteria.

• ∀S ⊆ Ω : S ∈ I ⇒ ∀S′ ⊆ S : S′ ∈ I, and

• ∀x ∈ Ω : {x} ∈ I.

The inclusion-maximal faces in I are called facets. Unless stated otherwise, we encode com-
plexes by the ground set Ω and the set of facets. Then |∆| is its encoding length.

Definition 40. The reduced Euler characteristic of a complex ∆ = (Ω, I) is defined as

χ̂(∆) := −
∑
S∈I

(−1)|S| .

Consider for example the complexes ∆1 and ∆2 in Figure 1, given with a computation of
their reduced Euler characteristic.

Let ∆ = (Ω, I) be a complex. Consider distinct elements x and y in Ω. We say that x
dominates y if, for every S ∈ I, y ∈ S implies S ∪ {x} ∈ I. For example, x and y dominate
each other if they are contained in the same facets. We start with a simple observation:

22

Lemma 41. Let ∆ = (Ω, I) be a complex and let x, y ∈ Ω. Then x dominates y if and only
if each facet that contains y must also contain x.

Proof. For the forward direction suppose x dominates y. Let F be a facet that contains y.
Then F ∪ {x} ∈ I. Since facets are inclusion maximal in I it follows that F = F ∪ {x}, that
is, x ∈ F .

For the backward direction suppose that each facet containing y must also contain x. Let
S ∈ I with y ∈ S. Then there is a facet F with S ⊆ F . Since x ∈ F we have S ∪ {x} ⊆ F
and hence S ∪ {x} ∈ I. Therefore x dominates y.

We say that a complex ∆ = (Ω, I) is irreducible if, for every y ∈ Ω, there is no x ∈ Ω\{y}
that dominates y.

Given ∆ = (Ω, I) and y ∈ Ω, we define ∆ \ y to be the complex obtained from ∆ by
deleting all faces that contain y and by deleting y from Ω. The following lemma seems to be
folklore. We include a proof only for reasons of self-containment.

Lemma 42. Let ∆ = (Ω, I) be a complex. If y ∈ Ω is dominated by some x ∈ Ω \ {y} then
χ̂(∆) = χ̂(∆ \ y).

Proof. Let ∆ = (Ω, I). Write Iy for the set of all faces containing y. Consider the mapping
b : Iy → Iy

b(S) :=

{
S ∪ {x} x /∈ S
S \ {x} x ∈ S .

Note that b is well-defined since S ∪ {x} ∈ Iy because y ∈ S and x dominates y. Observe
that b induces a partition of Iy in pairs {S, S ∪ {x}} for x /∈ S. For those pairs, we clearly
have |S|+ 1 = |S ∪ {x}|. Thus ∑

S∈Iy

(−1)|S| = 0 ,

and therefore
χ̂(∆) = −

∑
S∈I

(−1)|S| = −
∑

S∈I\Iy

(−1)|S| = χ̂(∆ \ y) .

Definition 43. Two complexes ∆1 = (Ω1, I1) and ∆2 = (Ω2, I2) are isomorphic if there is
a bijection b : Ω1 → Ω2 such that S ∈ I1 if and only if b(S) ∈ I2 for each S ⊆ Ω, where
b(S) = {b(x) | x ∈ S}.

Finally, a complex (Ω, I) is called trivial if it is isomorphic to ({x}, {∅, {x}}).

4.2.2 The Main Reduction

To begin with, we require a conjunctive query whose answers cannot be counted in linear time
under standard assumptions. To this end, we define, for positive integers k and t, a binary
relational structure Kk

t as follows. Start with a t-clique Kt and k-stretch every edge, that is,
each edge of Kt is replaced by a path consisting of k edges. We denote the resulting graph
by Kk

t . For each edge e of Kk
t , we introduce a relation Re = {e} of arity 2. The structure Kk

t

has universe V (Kk
t) and relations (Re)e∈E(Kk

t)
.

23

Observation 44. Let k and t be positive integers. The structure Kk
t is self-join-free and has

arity 2.

Lemma 45. Suppose that the non-uniform ETH holds. For all positive integers d, there is a
t such that for each k, the function D 7→ hom(Kk

t → D) cannot be computed in time O(|D|d).

Proof. We again write Kt for the t-clique and Kk
t for the k-stretch of Kt. Chen, Eickmeyer

and Flum [26] proved that, under non-uniform ETH, for each positive integer d, there is a t
such that determining whether a graph G contains Kt as a subgraph cannot be done in time
O(|G|d).

We construct a simple linear-time reduction to computing D 7→ hom(Kk
t → D). Since for

each edge e of the underlying graph Kk
t , the structure Kk

t has a separate binary single-element
relation Re, the input database D (of the same signature as Kk

t) also has a relation R′
e whose

elements can be interpreted as e-coloured edges. This means that the problem of computing
D 7→ hom(Kk

t → D) can equivalently be expressed as the following problem: Given a graph
G′, that comes with an edge-colouring col : E(G′) 7→ E(Kk

t), count the homomorphisms h
from Kk

t to G′ such that for each edge e of Kk
t we have col(h(e)) = e.

We now reduce the problem of determining whether a graphG containsKt to this problem.
Given input G, we construct an edge-coloured graph G′ as follows. Each edge of G is replaced
by

(
t
2

)
paths of length k, and we colour the edges of the i-th of those paths with the k edges

of the k-stretch of the i-th edge ei of Kt. It is easy to see that G contains a t-clique if and
only if there is at least one homomorphism from Kk

t to G′ that preserves the edge-colours.
Moreover, the construction of G′ can clearly be done in linear time.

Before proving Theorem 5, we need to take a detour to examine the complexity of com-
puting the reduced Euler Characteristic of a complex associated with a UCQ. To begin with,
we introduce the notion of a “power complex”.

Definition 46. Let U be a finite set, and let Ω ⊆ 2U be a set system that does not contain
U . The power complex ∆Ω,U is a complex with ground set Ω and faces

I =

{
S ⊆ Ω :

⋃
A∈S

A ̸= U

}
.

It is easy to check that ∆Ω,U is a complex — for each x ∈ Ω, the set {x} is in I since Ω
does not contain U . Although we typically encode complexes by the ground set Ω and the
set of facets, in the case of a power complex we list the elements of U and Ω.

In the first step, we show that each complex is isomorphic to a power complex.

Lemma 47. Let ∆ = (Ω, I) be a non-trivial irreducible complex. It is possible to compute,
in polynomial time in |∆|, a set U and a set Ω̂ ⊆ 2U with U /∈ Ω̂ such that ∆ is isomorphic
to the power complex ∆Ω̂,U .

Proof. Let F1, . . . , Fk be the facets of ∆ so that the encoding of ∆ consists of Ω and F1, . . . , Fk,
and |∆| is the length of this encoding. For each i ∈ [k], we introduce an element Ei corres-
ponding to Fi. Let U = {E1, . . . , Ek}. Next, we define a mapping b : Ω→ 2U as follows:

b(x) := {Ei | x /∈ Fi} .

24

Observe that b is injective since otherwise two elements of Ω are contained in the same facets
of ∆, which means that they dominate each other. Also, note that b(x) = U implies that x
is contained in every facet of ∆ and therefore dominates all other elements in Ω. This gives
a contradiction as ∆ is non-trivial and therefore Ω contains at least two elements (none of
which dominate each other).

We choose Ω̂ as the range of b. Then, clearly, b is a bijection from Ω to Ω̂. Furthermore,
U and Ω̂ can be constructed in time polynomial in |∆|.

It remains to prove that b is also an isomorphism from ∆ to ∆Ω̂,U . To this end, we need
to show that

S ∈ I ⇔
⋃

A∈b(S)

A ̸= U ,

where b(S) = {b(x) | x ∈ S}.
For the first direction, let S ∈ I. W.l.o.g. we have S ⊆ F1. Then, for all x ∈ S, E1 /∈ b(x).

Hence E1 /∈
⋃

A∈b(S)A. For the other direction, suppose that S /∈ I. Then S is not a subset of
any facet. Consequently, for every i ∈ [k], there exists xi ∈ S such that xi /∈ Fi. By definition
of b, we thus have that, for every i ∈ [k], there exists xi ∈ S such that Ei ∈ b(xi). Thus⋃

A∈b(S)A = U .

Recall, for example, the complex ∆1 in Figure 1. ∆1 has facets F1 = {2, 3, 4}, F2 =
{1, 2}, F3 = {1, 3}, and F4 = {1, 4}. Since ∆1 is irreducible and non-trivial, we can apply
the construction in the previous lemma to construct an isomorphic power complex: We set
U = {E1, E2, E3, E4}, since ∆1 has 4 facets. Moreover, the ground set Ω̂ of the power complex
is the range of the function b : Ω→ 2U with b(x) := {Ei | x /∈ Fi}, that is, b(1) = {E1} since
1 /∈ F1, and similarly, b(2) = {E3, E4}, b(3) = {E2, E4}, and b(4) = {E2, E3}. Then the facets
Î of the power complex are {E1, E3, E4}, {E1, E2, E4}, {E1, E2, E3}, and {E2, E3, E4}. Then
∆1 and the power complex ∆Ω̂,U are isomorphic, where for instance F2 = {1, 2} corresponds to
b(1)∪b(2) = {E1, E3, E4}. When applied to ∆2, the same construction yields a power complex
with U = {E1, E2, E3, E4} and ground set {{E3, E4}, {E1, E4}, {E2, E4}, {E1, E2, E3}}.

We now introduce the main technical result that we use to establish lower bounds for
Meta; note that computability result in the last part of Lemma 48 will just be required for
the construction of exemplary classes of UCQs in the appendix.

Lemma 48. For each positive integer t, there is a polynomial-time algorithm Ât that, when
given as input a non-trivial irreducible complex ∆ = (Ω, I) with Ω /∈ I, computes a union of
quantifier-free conjunctive queries Ψ = (B1, . . . ,Bℓ) satisfying the following constraints:

1. ∧ (Ψ) ∼= Kk
t for some k ≥ 1.

2. cΨ(∧ (Ψ)) = −χ̂(∆).

3. For all relational structures B ≇ ∧ (Ψ), cΨ(B) ̸= 0 implies that B is acyclic.

4. ℓ ≤ |Ω|.

5. For all i ∈ [ℓ] the conjunctive query Bi is acyclic and self-join-free, and has arity 2.

Moreover, the algorithm Ât can be explicitly constructed from t.

25

Proof. The algorithm Ât applies Lemma 47 to obtain U and Ω̂ such that the power-complex
∆Ω̂,U is isomorphic to ∆. Let k = |U| and assume w.l.o.g. that U = [k]. Let Ω̂ = {A1, . . . , Aℓ}.
Let ej be the j-th edge of the k-stretch of e in Kk

t and recall that Kk
t contains the relations

Rei = {ei} for each e ∈ E(Kt) and i ∈ [k]. For each i ∈ [k] we define Ei to be the substructure
of Kk

t containing the universe V (Kk
t) and the relations Rei (one relation for each e ∈ E(Kt)).

The algorithm constructs Ψ = (B1, . . . ,Bℓ) as follows: For each j ∈ [ℓ], set Bj = ∪i∈AjEi,
that is, Bj is the substructure of Kk

t obtained by taking all relations in Ei for all i ∈ Aj . The

pseudocode for Ât is as follows.

Algorithm 1 Pseudocode for Ât

1: Input: ∆ = (Ω, I)
2: (F1, . . . , Fk)← facets of ∆
3: for x ∈ Ω do
4: Ax ← {i | x /∈ Fi} ▷ U = [k] and Ω̂ = {Ax | x ∈ Ω} = {A1, . . . , Aℓ} yield the power

complex
5: end for
6: Kt ← t-clique, m←

(
t
2

)
▷ ei denotes the i-th edge of Kt

7: Kk
t ← k-stretch of Kt ▷ eji denotes the j-th edge of the k-stretch of ei ∈ E(Kt)

8: for i ∈ [m], j ∈ [k] do
9: R

eji
← {eji}

10: end for
11: for i ∈ [k] do
12: Ei ← (V (Kt

k), Rei1
, . . . , Reim

)
13: end for
14: for j ∈ [ℓ] do
15: Bj ←

⋃
i∈Aj
Ei

16: end for
17: Output: Ψ = (B1, . . . ,Bℓ)

We now prove the required properties of Ψ.

1. Recall that Ω is not a facet. Since ∆ and ∆Ω̂,U are isomorphic, Ω̂ is not a facet. Thus⋃
i∈[ℓ]Ai = U by the definition of power complexes. Since Bj contains all relations in Ei

with i ∈ Aj , we have that ∧ (Ψ) = Kk
t as desired.

2. Recall from Definition 25 that I(B, X) = {J ⊆ [ℓ] | (B, X) ∼ ∧ (Ψ|J)}. Since we are
in the setting of quantifier-free queries (X = U(B); we will drop the X as before),
equivalence (∼) is equivalent to isomorphism. Thus, we have that cΨ(∧ (Ψ)) is equal to∑

J⊆[ℓ]
∧(Ψ)∼=∧(Ψ|J)

(−1)|J |+1 =
∑
J⊆[ℓ]

∧(Ψ) ̸∼=∧(Ψ|J)

(−1)|J | =
∑
J⊆[ℓ]

∪j∈JAj ̸=U

(−1)|J | = −χ̂(∆Ω̂,U) = −χ̂(∆) .

3. If B ≇ ∧ (Ψ) and cΨ(B) ̸= 0, then B is a substructure of Kk
t that is missing at least one

of the Ei. The claim holds since each Ei is a feedback edge set (i.e., the deletion of all
tuples in Ei breaks every cycle), because deleting Ei corresponds to deleting one edge
from each stretch.

26

Figure 2: (Top:) The structure K4
3. (Bottom:) Substructures SA for some selected A ⊆ [4].

Observe that all of the SA are acyclic.

4. Follows immediately by construction.

5. The Bi are self-join-free and of arity 2 since they are substructures of Kk
t (see Observa-

tion 44). For acyclicity, we use the fact that for each j we have Aj ̸= U by definition of
the power complex, which implies the claim by the same argument as 3.

With all cases completed, the proof is concluded.

To provide a concrete example, we apply the construction in Lemma 48 to the complexes
∆1 and ∆2 in Figure 1. For this example, we will choose t = 3. Since both ∆1 and ∆2 have
four facets, we will choose k = 4. The structure Kk

t is depicted in Figure 2, together with six
selected substructures corresponding to the Bj in the proof of the Lemma 48.

Let us start by applying Â3 to ∆1. Recall from the previous example, that the power
complex of ∆1 has ground set {A1, A2, A3, A4} with A1 = {E1}, A2 = {E3, E4}, A3 =
{E2, E4}, and A4 = {E2, E3}. Thus Â3 returns the UCQ Ψ1 = (S1,S34,S24,S23). Similarly,
applying Â3 to ∆2 yields the UCQ Ψ2 = (S24,S34,S14,S123).

For the purpose of illustration, let us write Ψ1 and Ψ2 as formulas. To this end, given a
non-empty subset A of {1, 2, 3, 4}, define the conjunctive query φA as follows:

φA =
∧
a∈A

Rea1
(xa−1, xa) ∧Rea2

(x4+a−1, x4+a) ∧Rea3
(x8+a−1, x8+a) ,

where indices are taken modulo 12. Observe that the SA depicted in Figure 2 are the structures

27

associated to φA for A ∈ {{1}, {2, 4}, {1, 4}, {3, 4}, {2, 3}, {1, 2, 3}}. Then

Ψ1(x0, . . . , x11) = φ1 ∨ φ34 ∨ φ24 ∨ φ23 , and

Ψ2(x0, . . . , x11) = φ24 ∨ φ34 ∨ φ14 ∨ φ123

Note that ∧ (Ψ1) = ∧ (Ψ2) = K4
3. Now recall that χ̂(∆1) ̸= 0 and ˆχ(∆2) = 0. Thus, by

Item 2. of Lemma 48, it holds that cΨ1(K4
3) ̸= 0, which means that there is an acyclic CQ

in the CQ expansion of Ψ1. On the contrary, by Item 3. of Lemma 48, for all (A, X), we
have that cΨ2(A, X) ̸= 0 implies that (A, X) is acyclic. So, as a conclusion of our example,
using complexity monotonicity (Corollary 29) and Theorem 37, we obtain as an immediate
consequence:

Corollary 49. While it is not possible to count answers to Ψ1 in linear time (in the input
database), unless the Triangle Conjecture fails, for Ψ2 such a linear-time algorithm exists
(even though ∧ (Ψ1) = ∧ (Ψ2)).

Proof. By Corollary 29, it is possible to count answers to a UCQ Ψ in linear time if and
only if for each #minimal conjunctive query (A, X) with cΨ(A, X) ̸= 0, it is possible to
count answers to (A, X) in linear time. Since Ψ1 and Ψ2 are quantifier-free, all conjunctive
queries ∧ (Ψ1|J) and ∧ (Ψ2|J) are also quantifier-free and thus #minimal. For all (A, X),
cΨ2(A, X) ̸= 0 implies that (A, X) is acyclic, so it follows from Theorem 37 that it is possible
to count answers to Ψ2 in linear time. Moreover, given that K4

3 is not acyclic, Theorem 37
also implies that counting answers to K4

3 cannot be done in linear time, unless the Triangle
Conjecture fails. Since cΨ1(K4

3) ̸= 0, counting answers to Ψ1 cannot be done in linear time,
unless the Triangle Conjecture fails.

We will now conclude the hardness proof for Meta.

Lemma 50. For each positive integer t, there is a polynomial-time algorithm At that, when
given as input a complex ∆ = (Ω, I), either computes χ̂(∆), or computes a union of quantifier-
free conjunctive queries Ψ = (B1, . . . ,Bℓ) satisfying the following constraints:

1. ∧ (Ψ) ∼= Kk
t for some k ≥ 1.

2. cΨ(∧ (Ψ)) = −χ̂(∆).

3. For all relational structures B ≇ ∧ (Ψ), cΨ(B) ̸= 0 implies that B is acyclic.

4. ℓ ≤ |Ω|.

5. For all i ∈ [ℓ] the conjunctive query Bi is acyclic and self-join-free, and has arity 2.

Proof. Given ∆ = (Ω, I), we can successively apply Lemma 42 without changing the reduced
Euler characteristic, until the resulting simplicial complex is irreducible. This can be done in
polynomial time: By Lemma 41 it suffices to check whether there are y ̸= x ∈ Ω such that
each facet containing y also contains x. If no such pair exists, we are done. Otherwise we
delete y from Ω and from all facets and continue recursively. Clearly, the number of recursive
steps is bounded by |Ω| so the run time is at most a polynomial in |∆|.

If this process makes the complex trivial, we output 0 (i.e., the reduced Euler Charac-
teristic of the trivial complex). We can furthermore assume that Ω is not a facet, i.e., that
Ω /∈ I, since in this case every subset of Ω is a face and the reduced Euler Characteristic
is 0. We can thus assume that ∆ is non-trivial and irreducible, and that Ω is not a facet.
Therefore, we can use the algorithm Ât from Lemma 48. This concludes the proof.

28

We are now able to prove our lower bounds for Meta.

Lemma 51. If the Triangle Conjecture is true then Meta is NP-hard. If the Triangle
Conjecture and ETH are both true then Meta cannot be solved in time 2o(ℓ) where ℓ is the
number of conjunctive queries in its input. Both results remain true even if the input to Meta
is restricted to be over a binary signature.

Proof. For the first result, we assume the Triangle Conjecture and show that Meta is NP-
hard. The input to Meta is a formula Ψ′ which is a union of quantifier-free, self-join-free,
and acyclic conjunctive queries. The goal is to decide whether counting answers of Ψ′ (in an
input database) can be done in linear time.

We reduce from 3-SAT. Let F be a 3-SAT formula. The first step of our reduction is to
apply a reduction from [60]. Concretely, [60] gives a reduction that, given a 3-SAT formula
F with n variables and m clauses, outputs in polynomial time a complex ∆ such that F is
satisfiable if and only if χ̂(∆) ̸= 0. Moreover, the ground set of ∆ has size O(n+m).

Let t = 3 and let At be the algorithm from Lemma 50. Consider running At with input ∆.
If At outputs χ̂(∆) then we can check immediately whether χ̂(∆) = 0, which determines
whether or not F is satisfiable. Otherwise, At outputs a formula Ψ which is a union of
self-join-free, quantifier-free, and acylic conjunctive queries of arity 2, and further has the
property that cΨ(∧ (Ψ)) = −χ̂(∆). Since At is a polynomial-time algorithm, the number of
conjunctive queries ℓ in Ψ is at most a polynomial in n+m.

We wish to show that determining whether counting answers of Ψ can be done in linear
time would reveal whether or not cΨ(∧ (Ψ)) = 0 (which would in turn reveal whether F is
satisfiable).

By Corollary 29, it is possible to compute D 7→ ans(Ψ → D) in linear time if and only
if, for each relational structure A with cΨ(A) ̸= 0, the function D 7→ hom(A → D) can be
computed in linear time.

So the intermediate problem is to check whether, for each relational structure A with
cΨ(A) ̸= 0, the function D 7→ hom(A → D) can be computed in linear time. We wish to show
that solving the intermediate problem (in polynomial time) would enable us to determine
whether or not cΨ(∧ (Ψ)) = 0 (also in polynomial time).

Item 1 of Lemma 50 implies that there is a positive integer k such that ∧ (Ψ) ∼= Kk
3 . Thus,

∧ (Ψ) is not acyclic. However, Item 3 of Lemma 50 implies that every relational structure
A ≇ ∧ (Ψ) in the intermediate problem, the structure A is acyclic. Theorem 37 shows
(assuming the Triangle Conjecture) that, for each A, D 7→ hom(A → D) can be computed
in linear time if and only if A is acyclic. We conclude that the answer to the intermediate
problem is yes iff cΨ(∧ (Ψ)) = 0, completing the proof that Meta is NP-hard.

To obtain the second result, we assume both the Triangle Conjecture and ETH. In this
case, we apply the Sparsification Lemma [45] to the initial 3-SAT formula F before invoking
the reduction. By the Sparsification Lemma, it is possible in time 2o(n) to construct 2o(n)

formulas F1, F2, . . . such that F is satisfiable if and only if at least one of the Fi is satisfiable.
Additionally, each Fi has O(n) clauses. As before, for each such Fi we obtain in polynomial
time a corresponding complex ∆i, whose ground set has size O(n). For each ∆i, the algorithm
from Lemma 50 either outputs its reduced Euler characteristic χ̂(∆i) or or outputs a UCQ
Ψi which has the property that that cΨ(∧ (Ψi)) = −χ̂(∆i).

If, for any i, the algorithm outputs a value χ̂(∆i) ̸= 0 then Fi is satisfiable, so F is
satisfiable. Let I be the set of indices i such that the algorithm outputs a UCQ Ψi. The

29

argument from the first result shows that F is satisfiable if and only if there is an i ∈ I such
that counting answers to Ψi can be done in linear time.

We will argue that a 2o(ℓ) algorithm for Meta (where ℓ is the number of CQs in its input)
would make it possible to determine in 2o(n) time whether there is an i ∈ I such that counting
answers to Ψi can be done in linear time. This means that a 2o(ℓ) algorithm for Meta would
make it possible to determine in 2o(n) time whether F is satisfiable, contrary to ETH.

To do this, we just need to show that the number of CQs in Ψi, which we denote ℓ(Ψi),
is O(n). This follows since the ground set of ∆i has size O(n) and by Item 4 of Lemma 50,
ℓ(Ψi) is at most the size of the ground set. Since the size of I is 2o(n) the running time for
determining whether F is satisfiable is 2o(n) (for the sparsification) plus |I|poly(n) = 2o(n)

time (for computing the complexes ∆i) plus
∑

i∈I 2
o(ℓ(Ψi)) = 2o(n) for the calls to Meta,

contradicting ETH, as desired.

The proofs of the following two lemmas are analogous, with the only exception that we
do not invoke Theorem 37 but apply Lemma 45 with d = 1 to obtain a t such that for each
k the function D 7→ hom(Kk

t → D) cannot be evaluated in linear time. (For Lemma 52, we
also need that SETH implies non-uniform ETH, which is however a standard application of
the Sparsification Lemma [44]).

Lemma 52. If SETH is true then Meta is NP-hard and cannot be solved in time 2o(ℓ). This
remains true even if the input to Meta is restricted to be over a binary signature.

Lemma 53. If non-uniform ETH is true then Meta is NP-hard and, furthermore,

Meta /∈
⋂
ε>0

DTime(2ε·ℓ) .

This remains true even if the input to Meta is restricted to be over a binary signature.

Theorem 5 now follows immediately from Lemmas 38, 51, 52, and 53.
Finally, we point out that our construction shows, in fact, something much stronger than

just the intractability of deciding whether we can count answers to a UCQ in linear time: For
any pair (c, d) of positive integers satisfying c ≤ d, it is hard to distinguish whether counting
answers to a given UCQ can be done in time O(nc), or whether it takes time at least ω(nd).
Formally, we introduce the following gap problem:

Definition 54. Let c and d be positive integers with c ≤ d. The problem Meta[c, d] has
as input a union of quantifier-free, self-join-free, and acyclic conjunctive queries Ψ. The goal
is to decide whether the function D 7→ ans(Ψ → D) can be computed in time O(|D|c), or
whether it cannot be solved in time O(|D|d); the behaviour may be undefined for inputs Ψ
for which the best exponent in the running time is in the interval (c, d].

Theorem 55. Assume that non-uniform ETH holds. Then for each positive integer d, the
problem Meta[1, d] is NP-hard and, furthermore,

Meta[1, d] /∈
⋂
ε>0

DTime(2ε·ℓ) .

This remains true even if the input to Meta is restricted to be over a binary signature.

30

Proof. By Lemma 45 there is a positive integer t such that for all positive integers k, the
function D 7→ hom(Kk

t → D) cannot be computed in time O(|D|d). Fix this t and proceed
similarly to the proof of Lemma 53.

Corollary 56 is an immediate consequence, since any algorithm that solves Meta[c, d] for
1 ≤ c ≤ d solves, without modification, Meta[1, d].

Corollary 56. Assume that non-uniform ETH holds. Then for every pair (c, d) of positive
integers satisfying c ≤ d, the problem Meta[c, d] is NP-hard and, furthermore,

Meta[c, d] /∈
⋂
ε>0

DTime(2ε·ℓ) .

This remains true even if the input to Meta is restricted to be over a binary signature.

5 Connection to the Weisfeiler-Leman-Dimension

Recall that we call a database a labelled graph if its signature has arity at most 2, and if it
does not contain a self-loop, that is, a tuple of the form (v, v). Moreover, (U)CQs on labelled
graphs must also have signatures of arity at most 2 and must not contain atoms of the form
R(v, v), where R is any relation symbol of the signature.

Neuen [56] and Lanzinger and Barceló [50] determined the WL-dimension of computing
finite linear combinations of homomorphism counts to be the hereditary treewidth, defined
momentarily. Since counting homomorphisms is equivalent to counting answers to quantifier-
free conjunctive queries, and since the number of answers of a union of conjunctive queries
can be expressed as a linear combination of conjunctive query answer counts (Lemma 26), we
can state their results as follows.

Definition 57 (Hereditary Treewidth of UCQs). Let Ψ be a UCQ. The hereditary treewidth
of Ψ, denoted by hdtw(Ψ), is defined as follows:

hdtw(Ψ) = max{tw(A,X) | cΨ(A,X) ̸= 0},

that is, hdtw(Ψ) is the maximum treewidth of any conjunctive query that survives with a
non-zero coefficient when Ψ is expressed as a linear combination of conjunctive queries.

Then, applying the main result of Neuen, Lanzinger and Barceló to UCQs, we obtain:

Theorem 58 ([50,56]). Let Ψ be a quantifier-free UCQ on labelled graphs. Then dimWL(Ψ) =
hdtw(Ψ).

This enables us to prove Theorem 7, which we restate for convenience.

Theorem 7. There is an algorithm that computes a O(
√
log k)-approximation of the WL-

dimension k of a quantifier-free UCQ on labelled graphs Ψ = φ1∨· · ·∨φℓ in time |Ψ|O(1)·O(2ℓ).
Moreover, let f : Z>0 → Z>0 be any computable function. The problem of computing

an f -approximation of dimWL(Ψ) given an input UCQ Ψ = φ1 ∨ · · · ∨ φℓ is NP-hard, and,
assuming ETH, an f -approximation of dimWL(Ψ) cannot be computed in time 2o(ℓ).

31

Proof. For the upper bound, we compute the coefficients

cΨ(A, X) =
∑
J⊆[ℓ]

∧(Ψ|J)∼=(A,X)

(−1)|J |+1,

that is, for each subset J ⊆ [ℓ], compute ∧ (Ψ|J). Afterwards, collect the isomorphic terms
and compute cΨ(∧ (Ψ|J)) for each J ⊆ [ℓ]. Clearly, cΨ(A, X) = 0 for every (A, X) that is not
isomorphic to any ∧ (Ψ|J). Clearly, this can be done in time |Ψ|O(1) ·O(2ℓ).

Next, for each (A, X) with cΨ(A, X) ̸= 0, we use the algorithm of Feige, Hajiaghayi,
and Lee [33] to compute in polynomial time a g-approximation S(A, X) of the treewidth of
(A, X), where g(k) ∈ O(

√
log k). Finally, we output the maximum of S(A, X) over all (A, X)

with cΨ(A, X) ̸= 0
For the lower bound, assume that there is a function f : Z>0 → Z>0 and an algorithm

A that computes an f -approximation of dimWL(Ψ) in subexponential time in the number of
conjunctive queries in the union. We will use A to construct a subexponential time algorithm
for 3-SAT, which refutes ETH. Our construction is similar to the proof of Lemma 51. Fix
any positive integer t > f(1) + 1.

Let F be a 3-CNF with n variables, which we can again assume to be sparse by using
the Sparsification Lemma [19] (the details are identical to its application in the proof of
Lemma 51). Next, using [60], we obtain a complex ∆, the reduced Euler characteristic of
which is zero if and only if F is not satisfiable. Finally, we apply Lemma 50 with our choice
of t. The corresponding algorithm computes in polynomial time either the reduced Euler
characteristic of ∆, or otherwise outputs a UCQ Ψ such that the number ℓ of CQs in the
union is bounded by O(n). Moreover, the hereditary treewidth of Ψ is 1 if χ̂(∆) = 0, i.e., if
F is not satisfiable; and its hereditary treewidth is at least tw(Kk

t) = t− 1 > f(1), otherwise.
Thus, we run A on Ψ and report that F is satisfiable if and only if it outputs S > f(1).

Since A runs in time 2o(ℓ), the total running time is bounded by 2o(n), which refutes ETH.
NP-hardness follows likewise.

Finally, the proof of Theorem 8 is identical with the only exception being that, since k
is fixed, we can substitute the approximation algorithm for treewidth of Feige, Hajiaghayi,
and Lee [33] by the exact algorithm of Bodlaender [16], which runs in polynomial time if k is
fixed.

References

[1] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages
434–443. IEEE Computer Society, 2014.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[3] Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros. When
is approximate counting for conjunctive queries tractable? In Samir Khuller and Vir-
ginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium

32

on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1015–1027. ACM,
2021.

[4] Vikraman Arvind. The Weisfeiler-Lehman procedure. Bull. EATCS, 120, 2016.

[5] Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On the
Weisfeiler-Leman dimension of fractional packing. Inf. Comput., 288:104803, 2022.

[6] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Daniel
Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 684–697. ACM, 2016.

[7] Guillaume Bagan. Algorithmes et complexité des problèmes d’énumération pour
l’évaluation de requêtes logiques. (Algorithms and complexity of enumeration problems
for the evaluation of logical queries). PhD thesis, University of Caen Normandy, France,
2009.

[8] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive
queries and constant delay enumeration. In Jacques Duparc and Thomas A. Henzinger,
editors, Computer Science Logic, 21st International Workshop, CSL 2007, 16th Annual
Conference of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings,
volume 4646 of Lecture Notes in Computer Science, pages 208–222. Springer, 2007.

[9] Pablo Barceló, Mikhail Galkin, Christopher Morris, and Miguel A. Romero Orth. Weis-
feiler and Leman go relational. In Bastian Rieck and Razvan Pascanu, editors, Learning
on Graphs Conference, LoG 2022, 9-12 December 2022, Virtual Event, volume 198 of
Proceedings of Machine Learning Research, page 46. PMLR, 2022.

[10] Pablo Barceló, Miguel Romero, and Moshe Y. Vardi. Semantic Acyclicity on Graph
Databases. SIAM J. Comput., 45(4):1339–1376, 2016.

[11] Suman K. Bera, Lior Gishboliner, Yevgeny Levanzov, C. Seshadhri, and Asaf Shapira.
Counting subgraphs in degenerate graphs. J. ACM, 69(3):23:1–23:21, 2022.

[12] Christoph Berkholz, Fabian Gerhardt, and Nicole Schweikardt. Constant delay enumer-
ation for conjunctive queries: a tutorial. ACM SIGLOG News, 7(1):4–33, 2020.

[13] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering conjunctive
queries under updates. In Emanuel Sallinger, Jan Van den Bussche, and Floris Geerts,
editors, Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-
ciples of Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages
303–318. ACM, 2017.

[14] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering UCQs under
updates and in the presence of integrity constraints. In Benny Kimelfeld and Yael Ams-
terdamer, editors, 21st International Conference on Database Theory, ICDT 2018, March
26-29, 2018, Vienna, Austria, volume 98 of LIPIcs, pages 8:1–8:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

33

[15] Christoph Berkholz and Nicole Schweikardt. Constant delay enumeration with fpt-
preprocessing for conjunctive queries of bounded submodular width. In Peter Ross-
manith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th International Sym-
posium on Mathematical Foundations of Computer Science, MFCS 2019, August 26-30,
2019, Aachen, Germany, volume 138 of LIPIcs, pages 58:1–58:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[16] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

[17] Johann Brault-Baron. De la pertinence de l’énumération : complexité en logiques pro-
positionnelle et du premier ordre. (The relevance of the list: propositional logic and
complexity of the first order). PhD thesis, University of Caen Normandy, France, 2013.

[18] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Comb., 12(4):389–410, 1992.

[19] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiab-
ility of small depth circuits. In Jianer Chen and Fedor V. Fomin, editors, Parameterized
and Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Den-
mark, September 10-11, 2009, Revised Selected Papers, volume 5917 of Lecture Notes in
Computer Science, pages 75–85. Springer, 2009.

[20] Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Alessio Conte, Benny Kimelfeld, and
Nicole Schweikardt. Answering (unions of) conjunctive queries using random access and
random-order enumeration. ACM Trans. Database Syst., 47(3):9:1–9:49, 2022.

[21] Ashok K. Chandra and Philip M. Merlin. Optimal Implementation of Conjunctive Quer-
ies in Relational Data Bases. In John E. Hopcroft, Emily P. Friedman, and Michael A.
Harrison, editors, Proceedings of the 9th Annual ACM Symposium on Theory of Com-
puting, May 4-6, 1977, Boulder, Colorado, USA, pages 77–90. ACM, 1977.

[22] Hubie Chen and Stefan Mengel. A trichotomy in the complexity of counting answers to
conjunctive queries. In Marcelo Arenas and Mart́ın Ugarte, editors, 18th International
Conference on Database Theory, ICDT 2015, March 23-27, 2015, Brussels, Belgium,
volume 31 of LIPIcs, pages 110–126. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2015.

[23] Hubie Chen and Stefan Mengel. Counting answers to existential positive queries: A
complexity classification. In Tova Milo and Wang-Chiew Tan, editors, Proceedings of the
35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 315–326. ACM,
2016.

[24] Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A.
Kanj, and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Inf.
Comput., 201(2):216–231, 2005.

[25] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower
bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–1367, 2006.

34

[26] Yijia Chen, Kord Eickmeyer, and Jörg Flum. The exponential time hypothesis and
the parameterized clique problem. In Dimitrios M. Thilikos and Gerhard J. Woeginger,
editors, Parameterized and Exact Computation - 7th International Symposium, IPEC
2012, Ljubljana, Slovenia, September 12-14, 2012. Proceedings, volume 7535 of Lecture
Notes in Computer Science, pages 13–24. Springer, 2012.

[27] Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 210–223. ACM, 2017.

[28] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer,
2015.

[29] Vı́ctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen
from the other side. Theor. Comput. Sci., 329(1-3):315–323, 2004.

[30] Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász meets Weisfeiler and Leman. In
Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, edit-
ors, 45th International Colloquium on Automata, Languages, and Programming, ICALP
2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 40:1–40:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[31] Holger Dell, Marc Roth, and Philip Wellnitz. Counting answers to existential questions.
In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, edit-
ors, 46th International Colloquium on Automata, Languages, and Programming, ICALP
2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 113:1–113:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[32] Arnaud Durand and Stefan Mengel. Structural tractability of counting of solutions to
conjunctive queries. In Wang-Chiew Tan, Giovanna Guerrini, Barbara Catania, and Ana-
stasios Gounaris, editors, Joint 2013 EDBT/ICDT Conferences, ICDT ’13 Proceedings,
Genoa, Italy, March 18-22, 2013, pages 81–92. ACM, 2013.

[33] Uriel Feige, Mohammad Taghi Hajiaghayi, and James R. Lee. Improved approximation
algorithms for minimum weight vertex separators. SIAM J. Comput., 38(2):629–657,
2008.

[34] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

[35] Jacob Focke, Leslie Ann Goldberg, Marc Roth, and Stanislav Zivný. Approximately
counting answers to conjunctive queries with disequalities and negations. In Leonid
Libkin and Pablo Barceló, editors, PODS ’22: International Conference on Management
of Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 315–324. ACM, 2022.

[36] Jacob Focke and Marc Roth. Counting small induced subgraphs with hereditary prop-
erties. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM
SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages
1543–1551. ACM, 2022.

35

[37] Martin Fürer. On the combinatorial power of the weisfeiler-lehman algorithm. In Dimitris
Fotakis, Aris Pagourtzis, and Vangelis Th. Paschos, editors, Algorithms and Complexity
- 10th International Conference, CIAC 2017, Athens, Greece, May 24-26, 2017, Proceed-
ings, volume 10236 of Lecture Notes in Computer Science, pages 260–271, 2017.

[38] Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Treewidth and hypertree
width. In Lucas Bordeaux, Youssef Hamadi, and Pushmeet Kohli, editors, Tractabil-
ity: Practical Approaches to Hard Problems, pages 3–38. Cambridge University Press,
2014.

[39] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decomposition and
tractable queries. Journal of Computer and System Sciences, 64(3):579–627, 2002.

[40] Gianluigi Greco and Francesco Scarcello. Counting solutions to conjunctive queries:
structural and hybrid tractability. In Richard Hull and Martin Grohe, editors, Proceed-
ings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS’14, Snowbird, UT, USA, June 22-27, 2014, pages 132–143. ACM, 2014.

[41] Martin Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. J. ACM, 54(1):1:1–1:24, 2007.

[42] Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. ACM
Transactions on Algorithms, 11(1):4:1–4:20, 2014.

[43] Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the evaluation of con-
junctive queries tractable? In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yan-
nakakis, editors, Proceedings on 33rd Annual ACM Symposium on Theory of Computing,
July 6-8, 2001, Heraklion, Crete, Greece, pages 657–666. ACM, 2001.

[44] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001.

[45] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[46] Richard M. Karp and Michael Luby. Monte-Carlo algorithms for enumeration and re-
liability problems. In 24th Annual Symposium on Foundations of Computer Science,
Tucson, Arizona, USA, 7-9 November 1983, pages 56–64. IEEE Computer Society, 1983.

[47] Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The Weisfeiler-Leman dimen-
sion of planar graphs is at most 3. J. ACM, 66(6):44:1–44:31, 2019.

[48] Phokion G. Kolaitis and Moshe Y. Vardi. On the expressive power of datalog: Tools and
a case study. J. Comput. Syst. Sci., 51(1):110–134, 1995.

[49] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint
satisfaction. J. Comput. Syst. Sci., 61(2):302–332, 2000.

[50] Matthias Lanzinger and Pablo Barceló. On the power of the Weisfeiler-Leman test for
graph motif parameters. CoRR, abs/2309.17053, 2023.

36

[51] Dániel Marx. Approximating fractional hypertree width. ACM Trans. Algorithms,
6(2):29:1–29:17, 2010.

[52] Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive
queries. Journal of the ACM, 60(6), 2013. Article No. 42.

[53] Stefan Mengel. A short note on the counting complexity of conjunctive queries. CoRR,
abs/2112.01108, 2021.

[54] Carl A. Miller. Evasiveness of graph properties and topological fixed-point theorems.
Found. Trends Theor. Comput. Sci., 7(4):337–415, 2013.

[55] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-
order graph neural networks. In The Thirty-Third AAAI Conference on Artificial Intel-
ligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Arti-
ficial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019,
pages 4602–4609. AAAI Press, 2019.

[56] Daniel Neuen. Homomorphism-distinguishing closedness for graphs of bounded tree-
width. CoRR, abs/2304.07011, 2023.

[57] Reinhard Pichler and Sebastian Skritek. Tractable counting of the answers to conjunctive
queries. J. Comput. Syst. Sci., 79(6):984–1001, 2013.

[58] Marc Roth. Parameterized counting of partially injective homomorphisms. Algorithmica,
83(6):1829–1860, 2021.

[59] Marc Roth and Johannes Schmitt. Counting Induced Subgraphs: A Topological Ap-
proach to #W[1]-hardness. Algorithmica, 82(8):2267–2291, 2020.

[60] Bjarke Hammersholt Roune and Eduardo Sáenz-de-Cabezón. Complexity and algorithms
for Euler characteristic of simplicial complexes. J. Symb. Comput., 50:170–196, 2013.

[61] Robert Endre Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hyper-
graphs. SIAM J. Comput., 13(3):566–579, 1984.

[62] Moshe Y. Vardi. Constraint satisfaction and database theory: a tutorial. In Vic-
tor Vianu and Georg Gottlob, editors, Proceedings of the Nineteenth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, May 15-17, 2000,
Dallas, Texas, USA, pages 76–85. ACM, 2000.

[63] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Very Large Data Bases,
7th International Conference, September 9-11, 1981, Cannes, France, Proceedings, pages
82–94. IEEE Computer Society, 1981.

37

A Necessity of the Side Conditions in Theorem 3

We show that Theorem 3 is optimal in the sense that, if any of the conditions (I), (II), or (III)
is dropped, the statement of the theorem becomes false (assuming that W[1]-hard problems
are not fixed-parameter tractable).

Dropping condition (I)

Lemma 59. There is a recursively enumerable class C of quantifier-free UCQs of bounded
arity such that ∧ (C) has unbounded treewidth but #UCQ(C) is fixed-parameter tractable.
The class C satisfies (II) and (III).

Proof. Let ∆ be the second complex in Figure 1, that is, the ground set is Ω = {1, 2, 3, 4} and
the facets are {1, 2}, {2, 3}, {3, 1}, and {4}. Note that ∆ is irreducible (no element dominates
another element), non-trivial, and Ω is not a facet. We can thus use Lemma 48 and let Ψt

to be the output of algorithm Ât given ∆. Note that Ψt is quantifier-free — in particular,
this implies that all conjunctive queries within Ψt are #minimal. Since the algorithm Ât can
be explicitly constructed from t (see Lemma 48 and Algorithm 1) the class C = {Ψt | t ≥ 1}
is recursively enumerable. Furthermore, all of the relation symbols in queries in UCQs in C
have arity 2, so C has bounded arity.

By Item 1 of Lemma 48, ∧ (C) has unbounded treewidth, since the treewidth of Kk
t is

equal to t−1. Moreover, by Item 5 of Lemma 48, all Ψt are unions of self-join-free conjunctive
queries. We next show that #UCQ(C) is fixed-parameter tractable.

Recall that χ̂(∆) = −(3 − 4 + 1) = 0. Item 2 of Lemma 48 shows that cΨt(∧(Ψt)) = 0.
Item 3 shows that for any relational structure B that is not isomorphic to ∧(Ψt) with cΨt(B) ̸=
0, B is acyclic. Recall that Γ(C) is the class of those conjunctive queries that contribute to
the CQ expansion of at least one UCQ in C. So all CQs in Γ(C) are acyclic, which means
that the treewidth of Γ(C) is bounded by 1.

Since each query in Γ(C) is quantifier-free, and is thus its own contract, Γ(C) = contract(Γ(C)).
Thus, by Theorem 1, #UCQ(C) is fixed-parameter tractable.

We finish the proof by showing that C satisfies (II) and (III). Item (II) - that the number
of existentially qunatified variables of queries in C is bounded - is trivial, because there are
none. We have already noted (III) – that the UCQs in C are unions of self-join-free CQs.

Dropping condition (II)

Lemma 60. There is a recursively enumerable and deletion-closed class C of unions of self-
join-free conjunctive queries of bounded arity such that ∧ (C) has unbounded treewidth but
#UCQ(C) is fixed-parameter tractable.

Proof. The statement of the lemma guarantees that C satisfies items (I) and (III) of The-
orem 3.

Let k ≥ 3 be a positive integer and let τk = (E1, . . . , Ek) be a signature with arity(Ei) = 2
for all i ∈ [k]. For any pair i, j ∈ [k] with i < j, consider the conjunctive query

φi,j
k (x1, . . . , xk, x⊥) = ∃yi,jk : Ei(xi, y

i,j
k) ∧ Ej(xj , y

i,j
k) ∧

∧
ℓ∈[k]\{i,j}

Eℓ(xℓ, x⊥).

38

Let Ψk =
∨

i<j∈[k] φ
i,j
k and let C be obtained from the class {Ψk | k ≥ 3} by taking the closure

under deletion of conjunctive queries. Clearly, C is recursively enumerable.
Note that each conjunctive query φi,j

k is self-join-free and that Ψk contains
(
k
2

)
existentially

quantified variables. Thus the number of existentially quantified variables of queries in C is
unbounded. Moreover, the treewidth of ∧ (C) is unbounded. To see this, observe that

∧ (Ψk) (x1, . . . , xk) = ∃y1,2k , y1,3k , . . . , yk−1,k
k :

∧
i<j

Ei(xi, y
i,j
k) ∧ Ej(xj , y

i,j
k) ∧

∧
ℓ∈[k]

Eℓ(xℓ, x⊥).

Therefore, the Gaifman graph of ∧ (Ψk) contains as a subgraph a subdivision of a k-clique
and thus has treewidth at least k − 1.

It remains to show that #UCQ(C) is fixed-parameter tractable. To show this we claim
that the classes Γ(C) and contract(Γ(C)) have treewidth at most 2, and thus the problem
#UCQ(C) is fixed-parameter tractable by Theorem 1. To prove the claim, fix any k ≥ 3 and
any non-emtpy subset J ⊆ {(i, j) ∈ [k2] | i < j}. We will show that the #minimal represent-
atives of ∧ (Ψk, J) and its contract are acyclic. To this end, assume first that |J | = 1. Then
∧ (Ψk, J) is equal to one of the conjunctive queries φi,j

k , which is clearly acyclic. Since φi,j
k

is self-join-free and does not contain isolated variables, it is #minimal by Lemma 34. Let G
be the Gaifman graph of φi,j

k , and recall that the contract of φi,j
k is obtained from G[X] by

adding an edge between two free variables in X if and only if there is a connected component
in the quantified variables that is adjacent to both free variables. Since the only quantified
variable in φi,j

k is yi,jk , which is adjacent (in G) to xi and xj , the contract of φi,j
k is just the

graph obtained from G[X] by adding an edge between xi and xj , which also yields an acyclic
graph.

Next assume that |J | ≥ 2. For an index s ∈ [k], we say that J covers s if each (i, j) ∈ J
satisfies i = s or j = s. We distinguish three cases:

(A) There are distinct s1 < s2 such that J covers s1 and s2. Then J = {(s1, s2)}, contra-
dicting the assumption that |J | ≥ 2.

(B) There is precisely one s ∈ [k] such that J covers s. Assume w.l.o.g. that s = k. Then
since every (i, j) ∈ J has i < j

∧ (Ψk, J) =
∧

ℓ∈[k−1]

Eℓ(xℓ, x⊥) ∧
∧

(i,j)∈J

∃yi,jk : Ei(xi, y
i,j
k) ∧ Ej(xj , y

i,j
k)

=
∧

ℓ∈[k−1]

Eℓ(xℓ, x⊥) ∧
∧

(i,k)∈J

∃yi,kk : Ei(xi, y
i,k
k) ∧ Ek(xk, y

i,k
k).

Observe that any answer of ∧ (Ψk, J) in a database D is also an answer of the following
query, and vice versa:

ψk :=
∧

ℓ∈[k−1]

Eℓ(xℓ, x⊥) ∧
∧

i∈[k−1]

∃yi,kk : Ei(xi, y
i,k
k) ∧ Ek(xk, y

i,k
k),

since all yi,ℓk with i < k can be mapped to the same vertex as x⊥. Thus ∧ (Ψk, J)
and ψk are counting equivalent. Moreover, ψk is self-join-free and does not contain
isolated variables. Thus, by Lemma 34, it is #minimal. Finally, deleting xk from the
Gaifman graph of ψk yields an acyclic graph, and the same is true for the contract of
ψk. Therefore, the treewidth of both ψk and its contract are at most 2.

39

(C) There is no s ∈ [k] such that J covers s. Then

∧ (Ψk, J) =
∧
ℓ∈[k]

Eℓ(xℓ, x⊥) ∧
∧

(i,j)∈J

∃yi,jk : Ei(xi, y
i,j
k) ∧ Ej(xj , y

i,j
k).

Observe that any answer of ∧ (Ψk, J) in a database D is also an answer of the following
query, and vice versa:

ψk :=
∧
ℓ∈[k]

E(xℓ, x⊥) ,

since all yi,jk can be mapped to the same vertex as x⊥.

Thus ∧ (Ψk, J) and ψk are counting equivalent. Since ψk does not contain quantified
variables, it must be both its own #core and its own contract. This concludes the proof
of the claim since ψk is acyclic.

Dropping condition (III)

Lemma 61. There is a recursively enumerable and deletion-closed class C of quantifier-free
UCQs of bounded arity such that ∧ (C) has unbounded treewidth but #UCQ(C) is fixed-
parameter tractable.

Proof. The statement of the lemma guarantees that C satisfies items (I) and (II) of Theorem 3.
We show an even stronger claim by requiring C to be a recursively enumerable class of
quantifier-free CQs (instead of UCQs) of bounded arity such that ∧ (C) has unbounded
treewidth but #UCQ(C) is polynomial-time solvable. Note that each conjunctive query is a
(trivial) union of conjunctive queries; moreover, this also means that C is deletion-closed.

For each k ≥ 1, we define a conjunctive query ψk over the signature of graphs as follows:

ψk(x1, . . . , xk, x⊥) = ∃y :
∧
i∈[k]

E(xi, x⊥) ∧ E(xi, y) .

The query ψk has only one quantified variable. Moreover, the contract of ψk is a k-clique and
thus has treewidth k − 1. However, ψk is clearly #equivalent to the query

ψ′
k =

∧
i∈[k]

E(xi, x⊥) ,

which is its own contract (since there are no quantified variables), and which is of treewidth 1.
Thus, for C being the class of all ψk, we find that contract(∧ (C)) has unbounded treewidth,
but, according to Theorem 21, the problem #UCQ(C) is solvable in polynomial time.

40

	Introduction
	Our contributions
	Further Related Work

	Preliminaries
	Parameterised and Fine-grained Complexity Theory
	Structures, Homomorphisms, and Conjunctive Queries
	Unions of CQs and the Homomorphism Basis
	Complexity Monotonicity

	Classifications for Deletion-Closed UCQs
	The Quantifier-free Case
	The General Case

	The Meta Complexity of Counting Answers to UCQs
	Solving Meta via Inclusion-Exclusion
	Fine-grained Lower bounds for Meta
	Simplicial Complexes
	The Main Reduction

	Connection to the Weisfeiler-Leman-Dimension
	Necessity of the Side Conditions in Theorem 3

