229 research outputs found

    Self-pulsation at 480 GHz from a two-color discrete mode laser diode

    Get PDF
    A discrete mode Fabry-Pérot laser is designed and fabricated to achieve two-color lasing. We demonstrate beating between the two laser modes and self-pulsation at 480 GHz

    Inverse scattering approach to multiwavelength Fabry-Pérot laser design

    Get PDF
    A class of multiwavelength Fabry-Pérot lasers is introduced where the spectrum is tailored through a patterning of the cavity effective index. The cavity geometry is obtained using an inverse scattering approach and can be designed such that the spacing of discrete Fabry-Pérot lasing modes is limited only by the bandwidth of the inverted gain medium. A specific two-color semiconductor laser with a mode spacing in the THz region is designed, and measurements are presented demonstrating the simultaneous oscillation of the two wavelengths. The nonperiodic effective index profile of the particular two-color device considered is shown to be related to a Moiré or superstructure grating

    Monitoring and quantifying morphological and structural changes in electrode materials under operando conditions

    Get PDF
    X-ray absorption and small-angle x-ray scattering spectra were simultaneously acquired under operando conditions in a joined technique approach, for the first time applied in the field of energy storage materials. This approach allows one to closely follow the electronic and local structure evolution, as well as monitor and quantify the morphological and nanostructural changes occurring during electrochemical cycling. Here we demonstrate its potential on the example of doped and non-doped Fe2_2O3_3 anode material vs. Li. Our results reveal that upon discharge Fe3+^{3+} is gradually reduced to the metallic state and segregated as nanoparticles. For the relithiation reaction, upon subsequent charge, we observe improved reversibility for the Sr-doped compared to non-doped and Ca-doped Fe2_2O3_3. We highlight that this combined technique approach is a reliable, facile and powerful tool to investigate electrode materials under realistic cycling condition. It provides an unbiased and holistic picture of the morphological and structural changes occurring during operation, which allows for adequate material tailoring

    Gender Differences in the Perception of Personalized Half-Nude Female Bodies

    Get PDF
    In the current study, we investigated how the perception of half-nude female body representations is altered by framing with information about the presented person. Images from tabloid newspapers were presented to male and female observers, and rated according to their aesthetic appeal while neurofunctional correlates were assessed using functional magnetic resonance imaging. While a generally stronger appetitive response might be expected in men, our results show a significant interaction between framing condition and gender of the observer. Men rated female bodies as more pleasing when presented without personal information, whereas women expressed more aesthetic appeal when information was added. Neuroimaging data revealed gender differences in processing body representations with additional personal information. In women, there was a stronger involvement of the anterior cingulate cortex and adjacent ventromedial prefrontal cortex, and in male observers a higher engagement of the bilateral inferior parietal cortex, when compared to each other respectively. These gender differences in framing effects particularly highlight higher aesthetic appeal and reward processing in women when female bodies are personalized

    Primary Human Hepatocytes Repopulate Livers of Mice After In Vitro Culturing and Lentiviral-Mediated Gene Transfer

    Get PDF
    Cell-based therapies represent a promising alternative to orthotopic liver transplantation. However, therapeutic effects are limited by low cell engraftment rates. We recently introduced a technique creating human hepatocyte spheroids for potential therapeutic application. The aim of this study was to evaluate whether these spheroids are suitable for engraftment in diseased liver tissues. Intrasplenic spheroid transplantation into immunodeficient uPA/SCID/beige mice was performed. Hepatocyte transduction ability prior to transplantation was tested by lentiviral labeling using red-green-blue (RGB) marking. Eight weeks after transplantation, animals were sacrificed and livers were analyzed by immunohistochemistry and immunofluorescence. To investigate human hepatocyte-specific gene expression profiles in mice, quantitative real-time-PCR was applied. Human albumin and alpha-1-antitrypsin concentrations in mouse serum were quantified to assess the levels of human chimerism. Precultured human hepatocytes reestablished their physiological liver tissue architecture and function upon transplantation in mice. Positive immunohistochemical labeling of the proliferating cell nuclear antigen revealed that human hepatocytes retained their in vivo proliferation capacity. Expression profiles of human genes analyzed in chimeric mouse livers resembled levels determined in native human tissue. Extensive vascularization of human cell clusters was detected by demonstration of von Willebrand factor activity. To model gene therapy approaches, lentiviral transduction was performed ex vivo and fluorescent microscopic imaging revealed maintenance of RGB marking in vivo. Altogether, this is the first report demonstrating that cultured and retroviral transduced human hepatocyte spheroids are able to engraft and maintain their regenerative potential in vivo

    Bulk-Sensitive Soft X-ray Edge Probing for Elucidation of Charge Compensation in Battery Electrodes

    Get PDF
    To this day, elucidating the charge transfer process in electrode materials upon electrochemical cycling remains a challenge, primarily due to the complexity of chemical reactions at the electrode surfaces. Here, we present an elegant and reliable method to probe bulk-sensitive soft edges for elucidating anodic and cathodic charge compensation contribution via X-ray Raman scattering spectroscopy. By using a hard X-ray incident beam, this technique circumvents surface limitations and is practically free of self-absorption due to its nonresonant nature. In addition, it does not require complex sample preparation or experimental setups, making it an ideal tool for potential in situ analysis of the electronic structure of electrode materials. In this study, we monitored, for the first time, bulk soft edges of both oxygen and transition metal (iron) of the cathode material Li2FeSiO4Li_2FeSiO_4 during one complete electrochemical cycle concurrently. Our results reveal that the redox mechanism relies primarily on the iron (cathodic) contribution. Nevertheless, a change in electron confinement of the oxygen suggests its active involvement in the charge compensation process (anodic). Moreover, we were able to support the experimentally observed changes in the electronic structure with ab initio-based simulation

    A method to estimate the efficiency of gene expression from an integrated retroviral vector

    Get PDF
    BACKGROUND: Proviral gene expression is a critical step in the retroviral life cycle and an important determinant in the efficiency of retrovirus based gene therapy vectors. There is as yet no method described that can assess the efficiency of proviral gene expression while vigorously excluding the contribution from unstable species such as passively transferred plasmid and LTR circles. Here, we present a method that can achieve this. RESULTS: Proviral gene expression was detected by the activity of the puromycin resistance gene encoded in the viral vector, and quantified by comparing the growth curve of the sample under puromycin selection to that of a series of calibration cultures. Reproducible estimates of the efficiency of proviral gene expression could be derived. We confirm that contamination from unstable species such as passively transferred plasmid used in viral vector production and unintegrated viral DNA can seriously confound estimates of the efficiency of transduction. This can be overcome using a PCR based on limiting dilution analysis. CONCLUSION: A simple, low cost method was developed that should be useful in studying the biology of retroviruses and for the development of expression systems for retrovirus based gene therapy

    GENE-CELL THERAPY OF HIV AND HEMATOLOGICAL MALIGNANCES BASED ON HEMATOPOIETIC STEM CELL TRANSPLANTATION AND SITE-SPECIFIC GENOME EDITING

    Get PDF
    Based on the annual UNAIDS reports the number of HIVinfected patients is continually growing since 1983. Antiretroviral Therapy (ART) allows to prolong life expectancy, but the problem of life quality and overall survival is still remaining. Nowadays, in the era of ART, one of the main cause of mortality in HIV-infected patients is malignancies. Lymphomas play one of the key roles in this group of diseases. The treatment of lymphomas includes combined regiments of chemotherapy with a curative potential. High dose chemotherapy with autologous hematopoietic stem cell transplant (auto-HSCT) is the main path of the treatment for relapsed / refractory lymphomas. In the last few years with a development of the genome editing technology auto-HSCT is becoming one of the most promising methods of HIV treatment. The case of “Berlin patient” when allogeneic HSCT from donor with mutation CCR5-delta32 lead to cure from HIV and proof of concept the efficacy of the gene therapy for HIV based on HSCT. Hematopoietic stem cell transplantation with edited autologous HSC (CCR5 knockout by site-specific genome editing tools with engineering nucleases) is a comprehensive treatment for this cohort of patients. On one hand, high dose chemotherapy with auto-HSCT cures the malignancy; on the other hand auto-HSCT works as a delivery method for the edited cells and creates an environment for the HIV eradication. This review is dedicated to HIV and oncology, methods of treatment of hematological malignancies and HIV-infection using genome editing technology based on HSCT

    In-Depth Analysis of the Conversion Mechanism of TiSnSb vs Li by Operando Triple-Edge X-ray Absorption Spectroscopy: a Chemometric Approach

    Get PDF
    The electrochemical cycling mechanism of the ternary intermetallic TiSnSb, a promising conversion-type negative electrode material for lithium batteries, was thoroughly studied by operando X-ray absorption spectroscopy (XAS) at three different absorption edges, i.e., Ti, Sn, and Sb K-edge. Chemometric tools such as principal component analysis and multivariate curve resolution-alternating least squares were applied on the extensive data set to extract the maximum contained information in the whole set of operando data. The evolution of the near-edge (XANES) fingerprint and of the extended fine-structure (EXAFS) of the XAS spectra confirms the reversibility of the conversion mechanism, revealing that Ti forms metallic nanoparticles upon lithiation and binds back to both Sn and Sb upon the following delithiation. The formation of both Li7Sn2 and Li3Sb upon lithiation was also clearly confirmed. The application of chemometric tools allowed the identification of a time shift between the reaction processes of Sn and Sb lithiation, indicating that the two metals do not react at the same time, in spite of a certain overlap between their respective reaction. Furthermore, XANES and EXAFS fingerprint show that the Ti–Sn–Sb species formed after one complete lithiation/delithiation cycle is distinct from the starting material TiSnSb
    corecore