1,260 research outputs found

    Integral length scales in a low-roughness atmospheric boundary layer

    Get PDF
    This paper discusses the integral length scales in a low-roughness atmospheric boundary layer (ABL), based on the high-fidelity measurements of wind velocity. Results from the analysis shows that longitudinal integral length scales follow a linear relationship with height in a low-roughness ABL that deviates significantly from semi-empirical Engineering Sciences Data Unit (ESDU) 85020 model derived for open country and urban terrains with larger surface roughness heights. Although the model accurately predicts the integral length scales non-dimensionalised relative to the boundary layer thickness for the majority of the profile, they are over-predicted by more than double in the lowest 10% of the ABL, corresponding to the atmospheric surface layer (ASL). The analysis shows that the largest eddies at lower heights in the ASL over a very low roughness desert terrain have length scales similar to the characteristic lengths of physical structures positioned on the ground, which corresponds to the maximum wind loads for buildings. Hence, it is recommended that the integral length scales in the ASL are characterised over an estimated range at each of the four terrain categories in AS/NZS 1170.2 to ensure that buildings and other large physical structures can be optimised in terms of their size and location.M.J. Emes, M. Arjomandi, R.M. Kelso and F. Ghanad

    Quantum noise induced entanglement and chaos in the dissipative quantum model of brain

    Full text link
    We discuss some features of the dissipative quantum model of brain in the frame of the formalism of quantum dissipation. Such a formalism is based on the doubling of the system degrees of freedom. We show that the doubled modes account for the quantum noise in the fluctuating random force in the system-environment coupling. Remarkably, such a noise manifests itself through the coherent structure of the system ground state. The entanglement of the system modes with the doubled modes is shown to be permanent in the infinite volume limit. In such a limit the trajectories in the memory space are classical chaotic trajectories.Comment: 14 page

    Optimisation of the size and cost of heliostats in a concentrating solar thermal power tower plant

    Get PDF
    Concentrating solar thermal (CST) power tower (PT) is one of the most promising renewable technologies for large-scale electricity production, however the main limitation of PT systems is their significantly larger levelised cost of electricity (LCOE) relative to base load energy systems. One opportunity to lower the LCOE is to reduce the capital cost of heliostats through optimisation of the size and position of heliostat mirrors to withstand maximum wind loads during high-wind conditions when aligned parallel to the ground in the stow position. Wind tunnel experiments were carried out to measure the forces on thin flat plates of various sizes at a range of heights in a simulated part-depth atmospheric boundary layer (ABL). Calculated peak wind load coefficients on the stowed heliostat showed an inverse proportionality with the chord length of the heliostat mirror, which suggests that the coefficients could be optimised by increasing the size of the heliostat mirror relative to the sizes of the relevant eddies approaching the heliostat. The peak lift coefficient and peak hinge moment coefficient on the stowed heliostat could be reduced by as much as 23% by lowering the elevation axis height of the heliostat mirror by 30% in the simulated ABL. A significant linear increase of the peak wind load coefficients occurred at longitudinal turbulence intensities greater than 10% in the simulated ABL. Hence, the critical scaling parameters of the heliostat should be carefully considered depending on the turbulence characteristics of the site.Matthew Emes, Farzin Ghanadi, Maziar Arjomandi, Richard Kels

    Effect of turbulence characteristics in the atmospheric surface layer on the peak wind loads on heliostats in stow position

    Get PDF
    This study investigates the dependence of peak wind load coefficients on a heliostat in stow position on turbulence characteristics in the atmospheric surface layer, such that the design wind loads, and thus the size and cost of heliostats, can be further optimised. Wind tunnel experiments were carried out to measure wind loads and pressure distributions on a heliostat in stow position exposed to gusty wind conditions in a simulated part-depth atmospheric boundary layer (ABL). Force measurements on different-sized heliostat mirrors at a range of heights found that both peak lift and hinge moment coefficients, which are at least 10 times their mean coefficients, could be optimised by stowing the heliostat at a height equal to or less than half that of the mirror facet chord length. Peak lift and hinge moment coefficients increased linearly and approximately doubled in magnitude as the turbulence intensity increased from 10% to 13% and as the ratio of integral length scale to mirror chord length Lux/c increased from 5 to 10, compared to a 25% increase with a 40% increase in freestream Reynolds number. Pressure distributions on the stowed heliostat showed the presence of a high-pressure region near the leading edge of the heliostat mirror that corresponds to the peak power spectra of the fluctuating pressures at low frequencies of around 2.4 Hz. These high pressures caused by the break-up of large vortices at the leading edge are most likely responsible for the peak hinge moment coefficients and the resonance-induced deflections and stresses that can lead to structural failure during high-wind events.Matthew J. Emes, Maziar Arjomandi, Farzin Ghanadi, Richard M. Kels

    Intra-individual movement variability during skill transitions: A useful marker?

    Get PDF
    Applied research suggests athletes and coaches need to be challenged in knowing when and how much a movement should be consciously attended to. This is exacerbated when the skill is in transition between two more stable states, such as when an already well learnt skill is being refined. Using existing theory and research, this paper highlights the potential application of movement variability as a tool to inform a coach’s decision-making process when implementing a systematic approach to technical refinement. Of particular interest is the structure of co-variability between mechanical degrees-of-freedom (e.g., joints) within the movement system’s entirety when undergoing a skill transition. Exemplar data from golf are presented, demonstrating the link between movement variability and mental effort as an important feature of automaticity, and thus intervention design throughout the different stages of refinement. Movement variability was shown to reduce when mental effort directed towards an individual aspect of the skill was high (target variable). The opposite pattern was apparent for variables unrelated to the technical refinement. Therefore, two related indicators, movement variability and mental effort, are offered as a basis through which the evaluation of automaticity during technical refinements may be made

    Turbulence length scales in a low-roughness near-neutral atmospheric surface layer

    Get PDF
    Published online: 14 Oct 2019.This paper investigated the integral length scales of turbulence in a low-roughness atmospheric surface layer (ASL), characterised by very smooth terrain in the Utah desert during near-neutral conditions, and evaluated the Engineering Sciences Data Unit (ESDU) 85020 and 86010 predictions for the turbulence length scales in a lowroughness ASL. The correlation integral method was used to estimate the integral length scales of the velocity components with longitudinal, lateral and vertical separations from sonic measurements on a vertical tower and spanwise array in the Surface Layer Turbulence and Environmental Science Test (SLTEST) field experiment. It was found that the longitudinal integral length scales calculated using near-neutral SLTEST data followed a logarithmic relationship with height proportional to the mean velocity profile with approximately constant integral time scale, however the sizes of the longitudinal components of the energy-containing eddies in the low-roughness flat terrain were 2–3 times smaller than those previously measured during field experiments in open country terrains. The calculated length scales with longitudinal separations over the very smooth terrain characteristics of the salt flats at Dugway were not consistent with those predicted by ESDU 85020. In contrast, the scaling of the lateral and vertical components of the three-dimensional turbulence structure with respect to the longitudinal component in the low-roughness ASL were consistent with similarity theory predictions in ESDU 86010 that the scaling ratios are independent of terrain roughness. Furthermore, this confirms the large dependence of the longitudinal turbulence length scales on the upstream terrain roughness and highlights the large variation of turbulence length scales observed at different low-roughness sites in the literature.Matthew J. Emes, Maziar Arjomandi, Richard M. Kelso and Farzin Ghanad

    Dissipation and spontaneous symmetry breaking in brain dynamics

    Full text link
    We compare the predictions of the dissipative quantum model of brain with neurophysiological data collected from electroencephalograms resulting from high-density arrays fixed on the surfaces of primary sensory and limbic areas of trained rabbits and cats. Functional brain imaging in relation to behavior reveals the formation of coherent domains of synchronized neuronal oscillatory activity and phase transitions predicted by the dissipative model.Comment: Restyled, slight changes in title and abstract, updated bibliography, J. Phys. A: Math. Theor. Vol. 41 (2008) in prin

    Prospects For Identifying Dark Matter With CoGeNT

    Full text link
    It has previously been shown that the excess of events reported by the CoGeNT collaboration could be generated by elastically scattering dark matter particles with a mass of approximately 5-15 GeV. This mass range is very similar to that required to generate the annual modulation observed by DAMA/LIBRA and the gamma rays from the region surrounding the Galactic Center identified within the data of the Fermi Gamma Ray Space Telescope. To confidently conclude that CoGeNT's excess is the result of dark matter, however, further data will likely be needed. In this paper, we make projections for the first full year of CoGeNT data, and for its planned upgrade. Not only will this body of data more accurately constrain the spectrum of nuclear recoil events, and corresponding dark matter parameter space, but will also make it possible to identify seasonal variations in the rate. In particular, if the CoGeNT excess is the product of dark matter, then one year of CoGeNT data will likely reveal an annual modulation with a significance of 2-3σ\sigma. The planned CoGeNT upgrade will not only detect such an annual modulation with high significance, but will be capable of measuring the energy spectrum of the modulation amplitude. These measurements will be essential to irrefutably confirming a dark matter origin of these events.Comment: 6 pages, 6 figure

    The Interplay Between Anxiety and Social Functioning in Williams Syndrome

    Get PDF
    The developmental disorder Williams syndrome (WS) has been associated with an atypical social profile of hyper-sociability and heightened social sensitivity across the developmental spectrum. In addition, previous research suggests that both children and adults with WS have a predisposition towards anxiety. The current research aimed to explore the profiles of social behaviour and anxiety across a broad age range of individuals with the disorder (n = 59, ages 6–36 years). We used insights from parental reports on two frequently used measures, the Spence Children’s Anxiety Scale (SCAS-P) and the Social Responsiveness Scale (SRS). Severity of anxiety was correlated with a greater degree of social dysfunction as measured by the SRS in this group. We split the group according to high or low anxiety as measured by the SCAS-P and explored the profile of social skills for the two groups. Individuals high and low in anxiety differed in their social abilities. The results emphasise the need to address anxiety issues in this disorder and to consider how components of anxiety might relate to other features of the disorder
    • …
    corecore