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This paper investigated the integral length scales of turbulence in a low-11 

roughness atmospheric surface layer (ASL), characterised by very smooth terrain 12 

in the Utah desert during near-neutral conditions, and evaluated the Engineering 13 

Sciences Data Unit (ESDU) 85020 and 86010 predictions for the turbulence 14 

length scales in a low-roughness ASL. The correlation integral method was used 15 

to estimate the integral length scales of the velocity components with 16 

longitudinal, lateral and vertical separations from sonic measurements on a 17 

vertical tower and spanwise array in the Surface Layer Turbulence and 18 

Environmental Science Test (SLTEST) field experiment. It was found that the 19 

longitudinal integral length scales calculated using near-neutral SLTEST data 20 

followed a logarithmic relationship with height proportional to the mean velocity 21 

profile with approximately constant integral time scale, however the sizes of the 22 

longitudinal components of the energy-containing eddies in the low-roughness 23 

flat terrain were 2-3 times smaller than those previously measured during field 24 

experiments in open country terrains. The calculated length scales with 25 

longitudinal separations over the very smooth terrain characteristics of the salt 26 

flats at Dugway were not consistent with those predicted by ESDU 85020. In 27 

contrast, the scaling of the lateral and vertical components of the three-28 

dimensional turbulence structure with respect to the longitudinal component in 29 

the low-roughness ASL were consistent with similarity theory predictions in 30 

ESDU 86010 that the scaling ratios are independent of terrain roughness. 31 

Furthermore, this confirms the large dependence of the longitudinal turbulence 32 

length scales on the upstream terrain roughness and highlights the large variation 33 

of turbulence length scales observed at different low-roughness sites in the 34 

literature. 35 

Keywords: integral length scale; integral time scale; cross-correlation; turbulence 36 

intensity; atmospheric surface layer 37 

1. Introduction 38 

Wind codes and standards for permanent physical structures, such as low- to medium-39 



rise buildings, adopt a simplified gust factor approach that assumes quasi-steady wind 40 

loads based on a maximum gust wind speed. This can lead to significant errors for very 41 

tall buildings in urban terrains and stowed heliostat mirrors aligned parallel to the ground 42 

in desert terrains, due to their large dynamic responses to the large amplitude fluctuations 43 

during high-wind events such as gusts over short time intervals [1, 2]. Gusts are a rapid 44 

fluctuation of the instantaneous wind velocity from the mean wind over a specified 45 

sampling duration [3]. These flow fluctuations arise from eddies of varying sizes within 46 

the atmospheric boundary layer (ABL). The presence of “very large scale motions 47 

(VLSMs)” comprising packets of hairpin eddies with meandering regions of highly-48 

elongated negative and positive velocity fluctuations have been observed in the outer 49 

boundary-layer that scale on the boundary-layer thickness 𝛿 [4, 5, 6] and contribute up to 50 

60% of the total turbulent kinetic energy [7]. Although the combination of the “top-down” 51 

and “bottom-up” instability mechanisms responsible for generating these large-scale 52 

longitudinal eddy structures is unclear, they are impressed on the atmospheric surface 53 

layer (ASL), nominally the lowest 100 m of the ABL, as quasi-horizontal eddies but 54 

contribute little to the turbulent shear stress generated by surface-layer eddies produced 55 

by surface roughness and obstacles on the ground [6]. The average sizes of the energy-56 

containing eddies in the longitudinal direction of the lower surface layer can be 57 

represented by the Eulerian integral length scale 𝐿𝑢
𝑥 , following Taylor’s hypothesis that 58 

the turbulent flow field is translated downstream with uniform horizontal velocity 𝑈 in 59 

the longitudinal direction. The magnitude of 𝐿𝑢
𝑥  relative to the characteristic length of a 60 

physical structure has a significant effect on the fluctuating pressures and unsteady forces 61 

on physical structures [8, 9], which can result in galloping and torsional flutter when the 62 

turbulence length scales and characteristic length scale of the physical structure are the 63 

same order of magnitude [10]. Small eddies result in wind loads on various parts of a 64 



structure that become uncorrelated with distance of separation, however large eddies 65 

whose size is comparable with the structure result in well correlated pressures over its 66 

surface as the eddy engulfs the structure, leading to maximum wind loads [1, 11]. Tall or 67 

slender structures with low natural frequencies are most likely to respond to the dynamic 68 

effects of gusts, which can lead to failure from excessive deflections and stresses due to 69 

flutter and random turbulent buffeting in the direction of the wind [1, 12]. Maximum wind 70 

loads at lower heights in the ABL will therefore tend to occur from the interaction of the 71 

largest eddies in the flow with a structure. Holdø, Houghton [13] found that the mean 72 

drag coefficient on the surface of a scale-model low-rise building of height 𝐷 increased 73 

by 7% with an approximate doubling of 𝐿𝑢
𝑥 /𝐷 from 0.9 to 1.7 in a non-turbulent 74 

unsheared flow (𝐼𝑢 = 2%), compared to a 46% increase as 𝐿𝑢
𝑥 /𝐷 increases from 1.6 to 75 

3.6 in a turbulent sheared flow (𝐼𝑢 = 25% at 𝑧/𝛿 = 0.2) in the ABL simulated in a wind 76 

tunnel. Hence, consideration of the size of the largest eddies in the ABL relative to the 77 

characteristic length of a physical structure can lead to significant savings in costs due to 78 

the reduced design wind loading. 79 

Turbulent motions in the near-neutral surface layer generated by surface 80 

roughness that are observed as wind velocity fluctuations (gusts) can be closely 81 

represented by the turbulence profiles of a zero-pressure gradient turbulent boundary 82 

layer [14]. The surface layer has been shown to have similar turbulence properties as the 83 

canonical turbulent boundary layer along a flat plate in a wind tunnel [15], such as a 84 

logarithmic velocity profile in the logarithmic region of the ASL consistent with scaling 85 

laws based on the attached eddy model [4, 16]. The near-wall turbulence within the lowest 86 

one-third of the neutrally-stratified ASL scales similarly to wall-bounded turbulence 87 

observed in the laboratory at lower Reynolds numbers, however the vertical turbulence 88 

intensities and eddy structures exhibit sharp increases further from the wall in the 89 



logarithmic region that deviate from classical scaling law and laboratory data [16]. In the 90 

lower region of the near-neutral ASL characterised by strong shear with eddy 91 

wavelengths larger than the observation height (𝜆/𝑧 > 1), Mikkelsen, Larsen [17] showed 92 

that the longitudinal turbulence spectra observed at Høvsøre for 𝑧 < 20-40 m were most 93 

accurately modelled by the Kaimal spectrum with an additional shear production 94 

subrange ~𝑢∗
2𝑘−1 based on the friction velocity 𝑢∗ and measurement height 𝑧. Hence, the 95 

first objective of this study is to compare laboratory profiles within a turbulent boundary 96 

layer to the turbulence intensity and Reynolds shear stress profiles calculated from the 97 

analysis of Surface Layer Turbulence and Environmental Science Test (SLTEST) 98 

velocity measurements [4, 18, 19, 20, 21] close to the ground in the Utah desert during 99 

selected near-neutral conditions. 100 

Experimental field measurements in open country terrains have led to similarity 101 

theories concerning the spatial structure of turbulence in the surface layer. Semi-empirical 102 

models developed on the basis of similarity theory describe the flow over rural and urban 103 

terrains sufficiently to predict the surface shear stress, roughness height and turbulence 104 

intensities in the surface layer [22]. However, field measurements in rural terrains have 105 

shown considerable variation of integral length scales using different techniques. 106 

Teunissen [22] found that the correlation-integral approach using the autocorrelation 107 

function of velocity produced the largest longitudinal integral length scales in reasonable 108 

agreement with the Engineering Sciences Data Unit (ESDU 1974) model but only half 109 

those predicted by the model of Counihan [23]. Flay and Stevenson [24] suggested that 110 

the spectral-fit approach tended to underestimate length scales due to uncertainties 111 

associated with the identification of the peak in the broad spectra of slowly-varying 112 

turbulent eddies. Turbulent power spectra observations in the ASL have suggested that 113 

only the deviations of mean velocities, turbulence variances and length scales of the 114 



vertical component show consistent Obukhov scaling from site to site because of the 115 

absence of low-frequency components [25, 26]. In contrast, the low-frequency 116 

components of longitudinal turbulence cannot be consistently scaled from site to site 117 

because they are ‘very substantially enhanced by the “memory” of upstream terrain’ [26]. 118 

As a result, variation of the surface roughness height in open country and rural terrain 119 

ABLs has a significant effect on the distribution of longitudinal integral length scales at 120 

lower heights in the surface layer. The large variations in longitudinal turbulence length 121 

scales shown by field measurements [23, 24] at different sites and predicted by semi-122 

empirical models, such as ESDU 85020 [27] and ESDU 86010 [28]. The inconsistent 123 

scaling of the low-frequency horizontal components of turbulence from site to site is 124 

caused by eddy-ground interactions within the “eddy shear layer” from differences in the 125 

upstream terrain with aerodynamic roughness height 𝑧0 [6, 26]. However, similarity 126 

theory formulations derived in ESDU 86010 [28] predict that the spatial correlations of 127 

the lateral and vertical turbulence components are strongly correlated to the longitudinal 128 

turbulence component. Hence, the second objective of this study is to characterise the 129 

integral length scales of the three velocity components in a low-roughness ASL, using 130 

SLTEST field measurements obtained from Hutchins, Chauhan [4], for comparison with 131 

the integral length scales measured in rural terrains and predicted through autocorrelation 132 

and cross-correlation techniques by semi-empirical models in a low-roughness ASL. 133 

The overall aim of this paper is to estimate the sizes and frequencies of the energy-134 

containing turbulent eddies in a low-roughness surface layer using SLTEST field 135 

experiment measurements [4, 18, 19, 20, 21] in Dugway during near-neutral stability 136 

conditions for comparison with widely accepted semi-empirical models developed from 137 

similarity theory and experimental data. The sizes of the energy-containing eddies in the 138 

surface layer of the field experiment ABL [4] are estimated using autocorrelation and 139 



cross-correlation techniques to evaluate the integral length scales predicted by similarity 140 

theory correlations in ESDU 85020 [27] for longitudinal separations and ESDU 86010 141 

[28] for lateral and vertical separations. The findings can be used to provide 142 

recommendations for improving the accuracy and versatility of the current methods used 143 

for calculating the turbulence length scales during near-neutral conditions in a low-144 

roughness ASL. 145 

2. Atmospheric Surface Layer Turbulence Theory and Methods 146 

For the design of physical structures such as buildings with height 𝐷 less than 100 m 147 

corresponding to the surface layer in Figure 1, the logarithmic law is most appropriate for 148 

modelling the mean longitudinal velocity profile 𝑈(𝑧) under the assumption of 149 

asymptotic similarity in a neutral ABL [29] 150 

 𝑈(𝑧) =
𝑢∗

𝑘
ln (

𝑧

𝑧0
) (1) 151 

Here 𝑢∗ (m s-1) is the friction velocity representing the Reynolds shear stress 𝜏𝑠 = −𝜌𝑢∗
2 152 

at the surface, 𝑘 is von Karman’s constant (here taken as 0.41) and 𝑧0 (m) is the 153 

aerodynamic surface roughness height of the terrain, which can vary in scale from 154 

millimetres in a flat desert to metres in a dense urban area [30]. The design wind speed at 155 

the height of a physical structure in the ABL is normally calculated from measured gust 156 

velocities at the standard specification height of 10 m [27, 31, 32]. Hence, mean wind 157 

speeds are typically scaled to a 10 m reference height for the calculation of turbulence 158 

intensities, 𝐼𝑖(𝑧) = 𝜎𝑖(𝑧) 𝑈(𝑧)⁄ , where 𝜎𝑖 (m s-1) is the standard deviation of the 159 

fluctuating component of the instantaneous velocities 𝑖 = (𝑢, 𝑣, 𝑤) in the streamwise (𝑥), 160 

spanwise (𝑦) and vertical (𝑧) directions, respectively. Alternatively, viscous-scaled 161 

turbulence intensities are calculated as 𝜎𝑖/𝑢∗ in the atmospheric surface layer (ASL) with 162 

respect to the friction velocity. Turbulence parameters are not measured routinely at most 163 



locations, so they must be estimated using similarity theory, the wind speed at the 164 

standard specification height of 10 m in the ASL, an estimated surface roughness length, 165 

and experimentally derived factors. 166 

Similarity theory predicts that the sizes of the largest eddies are most dependent 167 

on the surface roughness height 𝑧0 in the lower surface layer and on the boundary-layer 168 

thickness 𝛿 in the outer layer of the ABL [27]. The boundary-layer thickness 𝛿 cannot be 169 

directly measured in field experiments, however it is usually defined as the height where 170 

the mean gradient of the horizontal wind velocity is close to zero [33]. Following the 171 

Ekman solution that friction reduces the boundary layer wind speed below geostrophic 172 

(Figure 1), the depth of a neutral boundary layer can be estimated as [33] 173 

 𝛿 = 2𝑐𝑘𝜋2 (
𝑢∗

𝑓
)  , (2) 174 

where 𝑐 is a constant of proportionality equal to about 0.1 and 𝑓 = 2𝜔 sin|𝜆| = 9.5 × 10–175 

5 rad/s is the Coriolis force at the latitude (𝜆 = 40.8° N) of the Bonneville salt flats in 176 

western Utah. The magnitude of 𝛿 varies diurnally between 100 m and 3 km with changes 177 

in atmospheric stability [33]. Wilson [19] showed that peak values of the ABL depth 178 

calculated from an idealised heat budget at the SLTEST site in Dugway increased to over 179 

1 km during daytime hours.  180 

The average thickness of the ABL in a neutral state with height-independent 181 

potential temperature is estimated to be of the order of 𝛿 ≈ 600 m, based on the analysis 182 

of data for high wind speeds (𝑈10 m > 5-7 m s-1) that produce adiabatic conditions [23]. 183 

It is noted that the ABL is only rarely in a neutral state, except in geographic locations 184 

that are subject to frequent strong winds. According to the Monin-Obukhov similarity 185 

theory, the influence of stratification on the state of the atmospheric surface layer is 186 

measured by the stability parameter defined as 187 



 
𝑧

𝐿
=

𝑔

𝜃0

𝑘𝑧𝑤′𝜃′̅̅ ̅̅ ̅̅ ̅

−𝑢∗
3   , (3) 188 

where 𝑔 (m s-2) is the gravitational acceleration, 𝑘 is von Karman’s constant, 𝑢∗ (m s-1) 189 

is the friction velocity calculated as (𝑢′𝑤′̅̅ ̅̅ ̅̅ 2 + 𝑣′𝑤′̅̅ ̅̅ ̅̅ 2)
1/4

 [33] in the current study at the 190 

reference height 𝑧 = 2.14 m of the spanwise array, 𝑤′𝜃′̅̅ ̅̅ ̅̅  (m s-1 K) is the surface heat flux 191 

and 𝜃0 (K) is the mean temperature. Near-neutral stability in the inertial sublayer of the 192 

ASL during adiabatic conditions with a near-zero vertical heat flux 𝑤′𝜃′̅̅ ̅̅ ̅̅ ≈ 0 is commonly 193 

defined using the Högström [34] criterion that |𝑧/𝐿| ≤ 0.1. The near-neutral surface layer 194 

thickness, denoted by 𝛿𝑠 in Figure 1, is considered by Hutchins, Chauhan [4] and Metzger, 195 

McKeon [14] as an effective boundary-layer thickness for the purposes of comparing with 196 

laboratory data of a turbulent boundary layer along a flat plate. The current study adopts 197 

the definition by Metzger, McKeon [14] that 𝛿𝑠 is approximated by the height at which 198 

the gradient of the horizontal velocity profile reaches a minimum during neutral 199 

conditions. This is a similar definition to the boundary layer thickness 𝛿 = 𝑧(𝑈 = 200 

0.99𝑈∞) along a flat plate in a wind tunnel, thus allowing reasonable comparison of non-201 

dimensional heights in atmospheric and laboratory turbulent boundary layers. 202 

 203 



Figure 1. Turbulence characteristics and structure of the atmospheric surface layer. 204 

 205 

The longitudinal integral length scale 𝐿𝑢
𝑥  (m) at a given height 𝑧 is calculated from the 206 

tranformation of point velocity measurements as a function of time to spatially distributed 207 

data by Taylor’s hypothesis. This assumes that eddies are embedded in a frozen turbulence 208 

field convected downstream at the mean wind speed 𝑈 (m s-1) in the streamwise direction 209 

∆𝑥 = 𝑈∆𝑡, and hence do not evolve with time 𝑡 [35]. The integral length scale of the 210 

velocity component 𝑖 = (𝑢, 𝑣, 𝑤) at a given height 𝑧 in the ASL is therefore calculated as 211 

[36] 212 

 𝐿𝑖
𝑥(𝑧) = 𝑇𝑖

𝑥(𝑧)𝑈(𝑧), (4) 213 

where 𝑇𝑖
𝑥 (s) is the integral time scale of the fluctuating velocity component 𝑖, 214 

representing the time taken for the average sizes of the energy-containing eddies to 215 

traverse a single point in the longitudinal 𝑥 direction. The integral time scale is calculated 216 

using Equation (6) by the integral of the autocorrelation function 𝑅𝑖(𝜏) in Equation (5) to 217 

its first-zero crossing 𝜏0, assuming that 𝑅𝑖(𝜏) fluctuates close to zero after this point [36]. 218 

When the autocorrelation curve decreases rapidly to zero, the peak value of the power 219 

spectrum is shifted to higher frequencies. The transfer of kinetic energy by the stretching 220 

and distortion of larger eddies to smaller eddies becomes excessively large in the high-221 

frequency region of the spectrum, which leads to dissipation by viscosity at the 222 

Kolmogorov length scale [37]. 223 

 𝑅𝑖(𝜏) =
𝑖′(𝑡)𝑖′(𝑡+𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜎𝑖
2 , (5) 224 

 𝑇𝑖
𝑥 = ∫ 𝑅𝑖(𝜏) 𝑑𝜏

∞

0
≈ ∫ 𝑅𝑖(𝜏) 𝑑𝜏

𝜏0

0
. (6) 225 

Here 𝑖 = (𝑢, 𝑣, 𝑤) defines the velocity components in the longitudinal direction. Cross-226 

correlation of the velocity component 𝑖 between two points with separation distances Δ𝑦 227 

in the lateral direction or Δ𝑧 in the vertical direction are calculated as follows: 228 



 𝑅𝑖𝑖(Δ𝑗, 𝜏 = 0) =
𝑖′(𝑗)𝑖′(𝑗+∆𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜎𝑖(𝑗)𝜎𝑖(𝑗+∆𝑗)
, (7) 229 

𝑇𝑖
𝑗

= ∫ 𝑅𝑖𝑖(𝛥𝑗) 𝑑𝛥𝑗
𝛥𝑗𝑚𝑎𝑥

𝛥𝑗=0
. (8) 230 

The majority of integral length scale data available in the literature has been 231 

obtained from field-site anemometer velocity measurements in rural and urban ABLs [22, 232 

23, 24], from which several semi-empirical equations have been derived to estimate the 233 

length scale profiles in the neutral ASL as a function of the aerodynamic surface 234 

roughness height of the terrain. ESDU 85020 [27] is a dataset based on a semi-empirical 235 

model for integral length scales of atmospheric turbulence over uniform terrain in a 236 

neutral ABL based on a reference mean wind speed 𝑈10𝑟 = 20 m s-1 at a 10 m height over 237 

open country terrain (𝑧0 = 30 mm) with 𝑓 = 1 × 10–5 rad s-1 [27]. A correction factor 𝑘𝐿 238 

is provided to account for the variation of 𝐿𝑢
𝑥  with changes in 𝑈10𝑟 and 𝑓 within an 239 

estimated ±8% error [27]. The model of Counihan [23] predicts the variation of 240 

longitudinal integral length scale with height as 241 

 𝐿𝑢
𝑥 (𝑧) = 𝐶𝑧1/𝑛, (9) 242 

where 𝐶 and 1/𝑛 are empirical variables as a function of the roughness height 𝑧0. Solari 243 

and Piccardo [38] proposed the following equation (𝑧 ≤ 200 m) based on the analysis of 244 

integral length scale data in terrains with surface roughness height 𝑧0 ranging from 10 245 

mm to 1 m: 246 

 𝐿𝑢
𝑥 (𝑧) = 300 (

𝑧

200
)

0.67+0.05 ln(𝑧0)

. (10) 247 

AS/NZS 1170.2 uses the following formula to predict the integral length scale in the ABL 248 

for the design of low- to medium-rise buildings (𝑧 ≤ 200 m) 249 

 𝐿𝑢
𝑥 (𝑧) = 85 (

𝑧

10
)

0.25
. (11) 250 

 251 



3. Experimental Facility and Data Pre-treatment 252 

Turbulence characteristics in the atmospheric surface layer (ASL) that develop from a 253 

shear-driven wall-bounded flow can be most simply and independently assessed from 254 

thermal effects during neutral conditions at high wind speeds that form the basis of wind 255 

codes and standards. Measurements of wind velocity were acquired from a field 256 

experiment study carried out by a large team comprising individuals from the University 257 

of Utah, University of Edinburgh, University of Minnesota, University of Melbourne, 258 

Imperial College, London, and the University of Alberta at the Surface Layer Turbulence 259 

and Environmental Science Test (SLTEST) facility in the western Utah Great Salt Lake 260 

desert. The unique geography of the site enabled measurements to be taken in a very high 261 

Reynolds number ABL (𝑅𝑒∗ = 𝛿𝑢∗ 𝜈⁄ ≈ 6×105) that has developed over 100 km of low 262 

surface roughness salt flats to the north of the SLTEST facility in Dugway Proving 263 

Grounds, Utah [5, 20, 21, 40]. Raw temperature and velocity data were measured 264 

simultaneously at the SLTEST site for approximately 6 days from 27 May to 3 June 2005 265 

using nine three-dimensional Campbell Scientific (CSAT3) sonic anemometers in a 266 

vertical tower array at heights 𝑧 = (1.42, 2.14, 3.00, 4.26, 6.14, 8.71, 12.52, 17.94 and 267 

25.69) m and a spanwise array of ten CSAT3 anemometers at 𝑧 = 2.14 m separated by 268 

equal distances of 3 m to the west of the vertical tower [18]. Three components of velocity 269 

in the streamwise 𝑥, spanwise 𝑦 and vertical 𝑧 directions were collected at a sampling 270 

frequency of 20 Hz [4]. All of the anemometers were oriented for predominantly uniform 271 

winds from the nominal north at an azimuth angle 𝛼 = 0° [18, 20]. It was noted by Wilson 272 

[19] that the tower had been installed near a raised parking area, on which stood several 273 

large instrument trailers. This caused some flow distortion at heights below 6.14 m in the 274 

vertical array, such as a 6% reduction in mean wind speed recorded by the tower sonic at 275 

𝑧 = 3 m compared with anemometers at the same height in a horizontal array positioned 276 



at least 10 m west of the tower [21]. Despite this mean velocity discrepancy, comparisons 277 

of spectra at the nine heights in the vertical array by McNaughton, Clement [21] showed 278 

an insignificant effect of the disturbed flow by the downwind obstacles. 279 

Conditions of neutral stability with negligible buoyancy effects were required to 280 

effectively compare statistically stationary data from canonical laboratory turbulent 281 

boundary layers [14, 41]. For neutrality of the SLTEST dataset, Hutchins, Chauhan [4] 282 

used the criterion of Högström [34] that |𝑧/𝐿| ≤ 0.1, which has been used in the current 283 

study. Table 1 shows ten hours in local time (LT = UTC – 6 h) that satisfy the following 284 

selection criteria for “near-neutral” conditions at the reference height 𝑧 = 2.14 m on the 285 

vertical SLTEST tower: stability parameter |𝑧/𝐿| ≤ 0.1, friction velocity 𝑢∗ ≥ 0.15 m s-286 

1, and steady winds with mean streamwise velocity 𝑈 ≥ 5 m s-1 and a mean flow angle 287 

|𝛼| = tan−1(𝑉/𝑈) ≤ 20° within the angular response of the sonic anemometers to ensure 288 

that the flow was well-aligned with respect to the anemometers for an accurate estimate 289 

of the shear stresses (friction velocities) and integral length scales. The raw horizontal 290 

velocity components 𝑢 in the longitudinal direction and 𝑣 in the lateral direction were 291 

corrected using trigonometric equations and the mean wind direction. 292 

Following the wind direction adjustment, the method introduced by Hutchins, Chauhan 293 

[4] for de-trending the velocity data was used to remove the long-term weather trends to 294 

obtain the turbulent fluctuations of the shear-generated flow associated with the average 295 

length scales of eddies in the lowest third of the atmospheric surface layer [17, 42]. A 296 

low-pass filter corresponding to a wavelength of 20𝛿 for an estimated surface layer 297 

thickness 𝛿 = 100 m is applied to the velocity fluctuations derived from the corrected 298 

longitudinal velocity component. This large-scale synoptic wave is removed from the 299 

fluctuating velocity signal to obtain the turbulent velocity fluctuations for analysis and 300 



comparison of the turbulence intensities and integral length scales with laboratory data 301 

and semi-empirical models, such as ESDU 85020 [27] based on similarity theory. 302 

The wall-normal heat flux 𝑤′𝜃′̅̅ ̅̅ ̅̅  remained close to zero during the ten selected 303 

near-dawn hours, hence the effects of buoyancy and non-stationarity from the transition 304 

in the sign of the heat flux can be considered negligible relative to the shear-generated 305 

turbulence in a neutral ASL [4]. The streamwise mean wind speed 𝑈 is 8 m s-1 at a 2.14-306 

m height during near-neutral hour 6 in Table 1, which was shown by Hutchins, Chauhan 307 

[4] to closely approximate the mean velocity statistics of a laboratory turbulent boundary 308 

layer along a flat plate. Velocity data from the ten near-neutral hours selected in Table 1 309 

were used for analysis of the turbulence profiles and statistics in Section 4. The 310 

calculation of integral length scales of the fluctuating velocity components were averaged 311 

over the ten near-neutral hours in Table 1 in order to present the statistical variability in 312 

the data. 313 

Near-

neutral 

hour 

Date 

2005 

Time 

LT 

Stability 

parameter 

𝒛/𝑳 

Friction 

velocity 

𝒖∗ (m s-1) 

Mean 

streamwise 

velocity 

𝑼 (m s-1) 

Mean flow 

angle 

𝜶 (°) 

1 27 May 0500-0600 0.06 0.15 4.9 -6.9 

2 1 June 0600-0700 0 0.42 5.1 -10.5 

3 1 June  0700-0800 0 0.47 4.9 -10.1 

4 1 June  0800-0900 0.002 0.30 5.8 -5.6 

5 1 June  0900-1000 0.001 0.28 5.3 -1.8 

6 2 June  0400-0500 0.01 0.25 8.0 -12.9 

7 2 June  0500-0600 -0.01 0.36 9.1 4.4 

8 2 June  0600-0700 -0.002 0.31 8.1 12.4 

9 2 June 0700-0800 -0.008 0.29 7.4 -14.4 

10 2 June 0800-0900 0 0.20 5.4 -15.7 

Table 1. Mean velocities and flow angles of SLTEST velocity data at 𝑧 = 2.14 m for 314 

selected near-neutral hours (|𝑧/𝐿| ≤ 0.1). 315 

 316 

The nine sonic anemometers in the wall-normal array were logarithmically spaced at 317 

heights between 1.42 m and 25.69 m. The measurement heights in the SLTEST field 318 

experiment were scaled on a near-neutral surface layer thickness 𝛿𝑠 of 80 ± 8 m, estimated 319 



from the height at which the mean velocity gradient of the horizontal wind reaches a 320 

minimum using prior radiosonde measurements acquired near sunset [14]. Hutchins, 321 

Chauhan [4] estimated that 𝛿𝑠 ≈ 60 m for a one-hour period (near-neutral hour 6 in Table 322 

1) from a composite best-fit of 𝑢′𝑢′̅̅ ̅̅ ̅̅ /𝑢∗
2 and −𝑢′𝑤′̅̅ ̅̅ ̅̅ /𝑢∗

2 with laboratory data of a zero-323 

pressure-gradient turbulent boundary layer. It is noted that these techniques introduce 324 

some experimental uncertainties in the estimation of 𝛿𝑠 compared to an independent 325 

measurement of the wall shear stress. The boundary-layer thickness 𝛿 during the near-326 

neutral hours in Table 1 is estimated to be of the order of 1000 m using Equation (3), with 327 

similar magnitudes to those inferred by Wilson [19] using an idealised heat budget. Since 328 

𝛿 and 𝛿𝑠 could not be directly calculated from the SLTEST measurements due to the 329 

maximum measurement height of 25.69 m on the vertical tower, there is an uncertainty 330 

of at least 10% in their estimated values. 331 

In the current study, laboratory data were used for comparison to demonstrate the 332 

similarities of turbulence intensities and Reynolds stresses near the ground in the neutral 333 

ASL and along a flat plate in a zero-pressure-gradient turbulent boundary layer. This 334 

would allow the SLTEST surface layer to be compared with the logarithmic law mean 335 

velocity profile and turbulence intensity profiles that have been non-dimensionalised with 336 

the boundary-layer thickness on a flat plate in a wind tunnel. 337 

4. Results 338 

Figure 2 shows the mean streamwise velocity profile, normalised with respect to the 339 

friction velocity and averaged over the ten near-neutral hours in Table 1, compared with 340 

the non-dimensional form of the logarithmic profile in Equation (1). The error bars on the 341 

SLTEST mean velocity profile indicate one standard deviation from the mean value of 342 

the ten near-neutral hours. The SLTEST mean velocity profile in Figure 2 is most closely 343 

represented by a logarithmic profile with an aerodynamic roughness height 𝑧0 ≈ 2 mm, 344 



in agreement with the finding by Kunkel and Marusic [43] that the terrain over the salt 345 

flats in Dugway was best approximated as a mildly transitional rough surface with an 346 

equivalent sand-grain roughness height 𝑘𝑠
+ ≈ 21. It is noted that the maximum difference 347 

between the SLTEST and logarithmic profiles is less than 1% at 𝑧 ≥ 8.71 m, whereas this 348 

difference is 2-5% at 𝑧 ≤ 6.14 m due to the flow interference by the nearby field trailers 349 

[19, 21]. Hence, the SLTEST mean velocity profiles suggest that the desert surface in 350 

Dugway Proving Grounds, Utah can be characterised as a low-roughness turbulent 351 

boundary layer along a flat plate. 352 

 353 

Figure 2. Mean velocity profile 𝑈+ = 𝑈/𝑢∗ normalised with friction velocity of the 354 

SLTEST data and averaged over the 10 near-neutral hours in Table 1, compared with 355 

theoretical models for a logarithmic velocity profile 𝑈/𝑢∗ in the non-dimensional form 356 

of Equation (1) with 𝑧0 = 0.0005 m and 0.002 m. Error bars on the SLTEST mean 357 

velocity profile indicate one standard deviation from the mean value. 358 

 359 

Figure 3(a,b) present the turbulence intensity profiles of the SLTEST data during near-360 

neutral hour 6 in the streamwise and spanwise directions with a maximum 10% 361 

experimental error in the estimate of the friction velocity 𝑢∗ = 0.25 m s-1. The height is 362 

non-dimensionalised with respect to an estimated surface layer thickness 𝛿𝑠 = 100 m in 363 



the SLTEST field experiment for a least-squares fitting of the streamwise turbulence 364 

intensity 𝜎𝑢/𝑢∗ profile within ±10% of smooth and rough wall laboratory data from Hinze 365 

[44] in a zero-pressure-gradient turbulent boundary layer. In contrast, the spanwise 366 

turbulence intensity profile 𝜎𝑣/𝑢∗ deviates by more than 10% from the rough wall 367 

turbulent boundary layer at 𝑧/𝛿𝑠 > 0.2. A least-squares fit of the spanwise turbulence 368 

fluctuations in the SLTEST data to the laboratory data showed that the surface layer 369 

thickness is closer to the estimate by Hutchins, Chauhan [4] of 𝛿𝑠 = 60 m during near-370 

neutral hour 6. There is a large uncertainty in these estimates of 𝛿𝑠, as the largest 371 

anemometer height of 25.69 m on the vertical tower array in the SLTEST measurements 372 

was less than half that of the predicted 𝛿𝑠 where the gradient of the horizontal wind speed 373 

approaches zero. The estimate of 𝛿𝑠 = 80 ± 8 m by Metzger, McKeon [14], determined 374 

using horizontal velocity and temperature profiles acquired from a tethersonde near 375 

sunset during near-neutral conditions at heights of up to 300 m at the SLTEST site, is 376 

therefore considered a feasible approximation for each of the ten near-neutral hours in 377 

Table 1. Although the Reynolds number, 𝑅𝑒∗ = 𝛿𝑠𝑢∗/𝜈 =7.9×105 – 2.5×106 for 𝛿𝑠 = 80 378 

m and 𝑢∗ in Table 1, is an order of magnitude larger in the SLTEST field experiment, the 379 

turbulence intensity profiles show good agreement with laboratory data for a smooth wall 380 

within the estimated experimental error of the friction velocity in the SLTEST data. 381 

Furthermore, the profile of the Reynolds shear stresses averaged over the ten near-neutral 382 

hours in Figure 3(c) is in close agreement with the profile calculated by Hutchins, 383 

Chauhan [4] during near-neutral hour 6. The Reynolds stress profile as a function of the 384 

inner-scaled viscous height 𝑧+ = 𝑧𝑢∗/𝜈 in the current study is also consistent with the 385 

theoretical prediction curve of Chauhan [45] following similarity formulations for a wall-386 

bounded turbulent boundary layer. This provides further validation that the turbulence 387 



statistics in the near-neutral ASL are as predicted from laboratory-based studies of flat-388 

plate turbulent boundary layers. 389 

 390 

Figure 3. (a) Streamwise turbulence intensity, (b) Spanwise turbulence intensity profiles 391 

during near neutral hour 6 (0400 – 0500 LT on 2 June 2005) of the SLTEST data as a 392 

function of non-dimensional height 𝑧/𝛿𝑠 with an estimated surface layer thickness 𝛿𝑠 = 393 

100 m. Error bars on the SLTEST data in (a) and (b) indicate a maximum 10% error in 394 

the estimate of friction velocity 𝑢∗. Smooth and rough wall data were taken from Hinze 395 

[44] for a zero-pressure-gradient turbulent boundary layer along a flat plate. The smooth 396 

wall has 𝑢∗/𝑈∞ ≈ 0.037 and 𝑅𝑒∗ = 75,000 and the rough wall has 𝑢∗/𝑈∞ ≈ 0.055 and 397 

𝑅𝑒∗ = 67,000. (c) Reynolds stress profile averaged over the ten near-neutral hours in the 398 

current study compared with the profile calculated by Hutchins, Chauhan [4] during 399 

near-neutral hour 6. The dashed line represents the similarity formulation from Chauhan 400 

[45].  401 

 402 

Figure 4(a) shows the autocorrelation function 𝑅𝑢 of the streamwise velocity at three 403 

heights in the SLTEST field experiment for the largest mean wind speed (𝑈10 m = 7.93 404 

m s-1) of near-neutral hour 6. It is noted that 𝑅𝑢 of the fluctuating velocity signal decreases 405 

quickly with time lag 𝜏 towards the first-zero crossing after 𝜏 = 20 s. The differences 406 

between the methods for estimating the integral length scales in Figure 4(b) highlights 407 

their sensitivity to time-scale filtering techniques applied to velocity measurements in 408 

micrometeorological studies. Approximating the shape of 𝑅𝑢 by an exponential fit by 409 



integrating 𝑅𝑢(𝜏) to 1/𝑒 yielded longitudinal integral length scales 𝐿𝑢
𝑥  in Figure 4(b) that 410 

were 22% and 16% lower on average at the SLTEST measurement heights than the 411 

correlation integral and spectral fit methods, respectively. The integral length scales 𝐿𝑢
𝑥  412 

in Figure 4(b) were also derived following the filtering method proposed by Salesky, 413 

Chamecki [46] using a power-law fit to the flux of the filtered velocity signal over a 414 

specified range of time filters to calculate the integral time scales. The length scales 415 

yielded by the correlation integral method were consistently larger than those calculated 416 

using the filtering and spectral fit methods at all of the SLTEST measurement heights, in 417 

agreement with the findings by Salesky, Chamecki [46]. The uncertainty in the spectral 418 

fit method may be explained by the difficulty in locating the peak of the power spectra 419 

over the relatively smooth terrain of the Utah desert. However, the large differences 420 

between the filtering method and the first-zero crossing correlation method are unclear 421 

but may be due to a poorly represented power-law fit to the standard deviation of the 422 

filtered velocity fluxes in the filtering method. Integrating under the 𝑅𝑢(𝜏) curve to the 423 

first-zero crossing 𝜏0 has been suggested by several experimental and numerical studies 424 

[36, 47, 48] to estimate the turbulence length scales within a turbulent boundary layer, 425 

which yielded similar results to integrating to 𝑅𝑢(𝜏) = 0.05 in the current study. Hence, 426 

the correlation integral to the first-zero crossing was considered the most appropriate 427 

method because of clearly defined limits of integration, consistent fluctuation of 𝑅𝑢 about 428 

zero after 𝜏0 and relatively smaller uncertainties compared to the other methods. It is 429 

observed that the profiles of 𝐿𝑢
𝑥  increase logarithmically with height following the mean 430 

wind velocity profile 𝑈(𝑧) in Figure 2. The integral time scales 𝑇𝑢
𝑥 and 𝑇𝑣

𝑥 in Figure 4(d) 431 

are approximately invariant with respect to the height within the ASL, which suggests 432 

that the power spectra of the horizontal velocity components are dominated by the 433 

inactive eddies during near-neutral conditions. Figure 4(e) shows the effect of 434 



atmospheric stability on the 𝑇𝑢
𝑥 profiles as a function of the stability parameter 𝑧/𝐿 435 

calculated using Equation (3) from selected SLTEST data at the reference height 𝑧 = 2.14 436 

m on the vertical tower for selected individual hours with mean flow angle |𝛼| ≤ 20°. It 437 

is observed that the integral time scales are relatively constant with height and increase 438 

with decreasing 𝑧/𝐿 from 𝑇𝑢
𝑥 =1.6 s during stable conditions (𝑧/𝐿 = 0.13) to 𝑇𝑢

𝑥 = 3.2 s 439 

during near-neutral stratification (𝑧/𝐿 ≈ 0) and 𝑇𝑢
𝑥 = 5.5 s in the strongly unstable or 440 

convective ASL (𝑧/𝐿 = -2). However, the integral time scales averaged over multiple 441 

hours from additional data sets in low-roughness terrains within a similar stability range 442 

would provide representative values of 𝑇𝑢
𝑥 for different stability regimes. 443 

Figure 4(c) shows the integral length scales of the three velocity components, 444 

averaged over the ten near-neutral hours in Table 1 with a maximum variation of ±30% 445 

from the mean values, using the correlation integral method as a function of height in the 446 

SLTEST surface layer. The ratios of the integral length scales for separations in the 447 

longitudinal direction are 𝐿𝑢
𝑥 𝐿𝑣

𝑥⁄ ≈ 1.4, 𝐿𝑢
𝑥 𝐿𝑤

𝑥⁄ ≈ 27 and 𝐿𝑣
𝑥 𝐿𝑤

𝑥⁄ ≈ 20. The corresponding 448 

ratios for isotropic turbulence are 2, 2 and 1, respectively, indicating the significant 449 

contribution of spectral power in the horizontal velocity components that reflects the large 450 

inactive eddies with scales nominally proportional to the boundary layer thickness. The 451 

ratio of 𝐿𝑢
𝑥 /𝑧 varies from 2 to 10 with decreasing height 𝑧 from 25.69 m to 1.42 m on the 452 

vertical SLTEST tower in Figure 4(c), which suggests that small physical structures of 453 

height 𝐷 in the surface layer of low-roughness terrains are exposed to sizes of the energy-454 

containing eddies that are of the same order of magnitude as the characteristic dimension 455 

of the physical structure. These ratios have generally been found to result in the maximum 456 

wind loads due to turbulent buffeting [1, 11]. 457 



 458 

 459 

Figure 4. Distributions of integral length scales with height in the SLTEST field 460 

experiment: (a) Autocorrelation function of streamwise velocity as a function of time 461 

lag 𝜏 at three heights in the SLTEST surface layer during near-neutral hour 6 (0400 – 462 

0500 LT on 2 June 2005); (b) Longitudinal integral length scales calculated during near-463 

neutral hour 6 using four different methods: integral to the first-zero crossing of 𝑅𝑢, 464 

fitting of the von Karman equation to the turbulent spectra, exponential fit by 465 

integrating to 𝑅𝑢 = 1/𝑒, and the filtering method proposed by Salesky, Chamecki [46]; 466 

(c) Integral length scale profiles of the streamwise 𝑢, spanwise 𝑣 and vertical 𝑤 467 

velocities for separations in the longitudinal 𝑥 direction averaged for the 10 near-neutral 468 

hours selected in Table 1; (d) Integral time scale profiles of the three velocity 469 

components for separations in the longitudinal 𝑥 direction. Error bars indicate one 470 

standard deviation from the mean value showing the variation between the near-neutral 471 

hours in Table 1; (e) Integral time scale profiles as a function of the stability parameter 472 

𝑧/𝐿 based on individual hours of velocity data at the reference height 𝑧 = 2.14 m on the 473 

vertical SLTEST tower for steady winds with mean flow angle |𝛼| ≤ 20°. The dashed 474 

line for neutral stability (𝑧/𝐿 = 0) is calculated from the average 𝑇𝑢
𝑥 over the ten near-475 

neutral hours with standard deviation shown by the error bars in Figure 4(d). 476 

 477 



Figure 5 presents the distribution of longitudinal integral length scales with height in the 478 

SLTEST surface layer, estimated using the correlation integral method in comparison 479 

with experimental measurements in low-roughness surface layers and semi-empirical 480 

equations. The logarithmic profile of 𝐿𝑢
𝑥  shown in Figure 4(c) is reflected in field 481 

measurements in open country terrains (𝑧0 ≈ 30 mm), such as those reported by Flay and 482 

Stevenson [24] on short grassy plains near Christchurch. Integral length scale profiles 483 

predicted by ESDU 85020 [27] correlations were previously observed by Farell and 484 

Iyengar [49] to be an upper bound to field measurements in surface layers over open 485 

country and urban terrains. It is clear from Figure 5 that the 𝐿𝑢
𝑥  profiles predicted by the 486 

semi-empirical models [23, 27, 38] for a low-roughness terrain are not consistent with the 487 

𝐿𝑢
𝑥  profile calculated using the SLTEST data during near-neutral conditions. This 488 

suggests that the estimation in semi-empirical models that 𝐿𝑢
𝑥  generally increases with 489 

decreasing 𝑧0 at a constant height in the surface layer may not reliably approximate the 490 

case of a very low roughness terrain. However, it must be noted that the values of 𝐿𝑢
𝑥  from 491 

an extensive range of surface layer measurements reported by Counihan [23] vary by as 492 

much as an order of magnitude in the lowest 10 m over low-roughness terrains. The large 493 

variation in 𝐿𝑢
𝑥  at lower heights in surface layers is enhanced by differences in the 494 

upstream terrain and thus the low-frequency components of the horizontal components of 495 

turbulence cannot be consistently scaled from site to site [26]. 496 



 497 

Figure 5. Longitudinal integral length scales calculated using the correlation integral 498 

method as a function of height in the SLTEST field experiment compared with those 499 

measured in low-roughness surface layers [23, 24] and predicted by semi-empirical 500 

equations [27, 32, 38]. Error bars on the SLTEST data indicate the average variation of 501 

±30% of 𝐿𝑢
𝑥  observed during the ten near-neutral hours selected in Table 1. Error bars 502 

on the ESDU curve indicate a ±8% error in the variation of 𝐿𝑢
𝑥  with changes in mean 503 

wind speed. 504 

 505 

Table 2 shows the longitudinal turbulence length scales calculated by autocorrelation 506 

and their ratio with the spanwise and vertical length scales at the standard reference 507 

height of 10 m. Length scales of the longitudinal velocity component varied from 27 m 508 

to 49 m in the height range of the SLTEST vertical tower during neutral conditions, 509 

however the average 𝐿𝑢
𝑥 = 42 m at the standard 10-m measurement height was not 510 

consistent with semi-empirical models and other field measurements. The average value 511 

of 𝐿𝑢
𝑥  during neutral hours is 2-3 times smaller than those measured over flat “open 512 

country” terrains [22, 24] and those predicted by ESDU 85020 [27] during neutral 513 

conditions with 𝑈 = 8.6 m/s, 𝑓 = 9.5×10-5 rad/s and 𝑧0 = 0.002 m. The ratios 𝐿𝑣
𝑥/𝐿𝑢

𝑥  514 

and 𝐿𝑤
𝑥 /𝐿𝑢

𝑥  in the desert ASL are at least 15% and 35% larger than field measurements 515 

by Flay and Stevenson [24] and approximately double those by Teunissen [22]. This 516 

suggests that the upstream terrain has a greater effect on 𝐿𝑢
𝑥  than on 𝐿𝑤

𝑥 , which is in 517 



agreement with the findings of Panofsky, Larko [26]. However, Table 2 shows that the 518 

calculated 𝐿𝑢
𝑥  in the current study during neutral conditions are not consistent with 519 

ESDU 85020 [27] predictions in a low-roughness ASL. This may be due to the small 520 

data set limited by the measurement period and the constraints of data selection for 521 

steady wind conditions. 522 

Length 

scales 
Current study 

ESDU 85020 [27] Teunissen [22] Flay and Steve

nson [24] 

𝐿𝑢
𝑥  (m) 42 93 62 88 

𝐿𝑣
𝑥/𝐿𝑢

𝑥  0.46 0.25 0.18 0.39 

𝐿𝑤
𝑥 /𝐿𝑢

𝑥  0.20 0.09 0.08 0.13 

Table 2. Average ratios of turbulence length scales 𝐿𝑖
𝑥 of the neutral SLTEST velocity 523 

data in Table 1 at the standard reference height 𝑧 = 10 m, compared with ESDU 85020 524 

[27] and field measurements [22, 24]. 525 

Table 3 shows the cross-correlation turbulence length scales ratios, compared with those 526 

predicted by ESDU 86010 [28] and other field measurements [22, 24]. In contrast to the 527 

length scales with longitudinal separations in Table 2, the ratios of the longitudinal and 528 

vertical length scales with lateral and vertical separations to the longitudinal length 529 

scale, 𝐿𝑢
𝑦

/𝐿𝑢
𝑥 = 0.28, 𝐿𝑢

𝑧 /𝐿𝑢
𝑥 = 0.32, 𝐿𝑤

𝑦
/𝐿𝑢

𝑥 = 0.07 and 𝐿𝑤
𝑧 /𝐿𝑢

𝑥 = 0.06 showed good 530 

agreement with other field measurements. Hence, the scaling effects of the lateral and 531 

vertical turbulence components of the three-dimensional turbulence structure in a low-532 

roughness ASL are consistent with similarity theory predictions. This suggests that the 533 

scaling of the three-dimensional spatial variation of turbulent energy-containing eddies 534 

during neutral conditions in the ASL is consistent and independent of terrain roughness. 535 

Length 

scales 
Current study 

ESDU 86010 [28] Teunissen [22] Flay and Steve

nson [24] 

𝐿𝑢
𝑦

/𝐿𝑢
𝑥  0.28 0.28 0.39 0.24 

𝐿𝑣
𝑦

/𝐿𝑢
𝑥  0.32 0.27 0.46 0.35 

𝐿𝑤
𝑦

/𝐿𝑢
𝑥  0.07 0.05 0.06 0.05 

𝐿𝑢
𝑧 /𝐿𝑢

𝑥  0.27 0.33 – 0.23 

𝐿𝑣
𝑧 /𝐿𝑢

𝑥  0.14 0.16 – 0.26 

𝐿𝑤
𝑧 /𝐿𝑢

𝑥  0.06 0.06 – 0.08 



Table 3. Average ratios of turbulence length scales, 𝐿𝑖
𝑦

/𝐿𝑢
𝑥  and 𝐿𝑖

𝑧/𝐿𝑢
𝑥 , calculated by cross-536 

correlation of neutral SLTEST velocity data in Table 1 at the reference height 𝑧 = 2.14 537 

m (𝐿𝑢
𝑥 = 27 m) for the spanwise array and 𝑧̅ = 9 m (𝐿𝑢

𝑥 = 40 m) for the vertical tower, 538 

respectively. Comparison with ESDU 86010 [28] and field measurements [22, 24] at 𝑧 = 539 

10 m. 540 

5. Conclusions 541 

The turbulence length scales over a very flat, open terrain in a desert surface layer have 542 

been investigated based on ten hours of SLTEST velocity data measurements [4, 18, 19, 543 

20, 21] during near-neutral conditions. The very small data set of ten near-neutral hours 544 

analysed is a limitation of the current study due to the constraints of data selection with a 545 

near-zero stability parameter, a sufficient horizontal wind speed and a mean flow angle 546 

that is not excessively large with respect to the orientation of the anemometers in the 547 

vertical array for an accurate estimate of the shear stresses and integral length scales. It is 548 

acknowledged that further studies and data sets in low-roughness terrains are required in 549 

order to verify and extend the findings. Nevertheless, the following major conclusions 550 

can be drawn: 551 

 For the purposes of studying the turbulence length scales in a neutrally-stratified 552 

ABL, the mean velocity profile during the ten near-neutral hours of SLTEST data 553 

selected is consistent with the logarithmic profile of a low-roughness (𝑧0 = 0.002 554 

m) terrain within a maximum error of 1% at 𝑧 ≥ 8.71 m and 5% at 𝑧 ≤ 6.14 m 555 

due to the flow interference by the nearby field trailers [19, 21]. Turbulence 556 

intensity and Reynolds stress profiles calculated from SLTEST data during near-557 

neutral conditions show good agreement with laboratory data from Hinze [44] for 558 

a smooth wall when the height is non-dimensionalised with respect to an estimated 559 

surface layer thickness 𝛿𝑠 of 80 m. This is in agreement with radiosonde 560 

measurements by Metzger, McKeon [14] at heights up to 300 m and hence, 561 

provides further validation that the turbulence profiles in the near-neutral 562 



atmospheric surface layer are similar to those in the canonical turbulent boundary 563 

layer on a flat plate.  564 

 Integral length scales calculated by the integration of the autocorrelation function 565 

of velocity 𝑅𝑢 to the first-zero crossing 𝜏0 yielded the largest values of 𝐿𝑢
𝑥  and 566 

was considered the most appropriate method because of clearly defined 567 

integration limits, consistent fluctuation of 𝑅𝑢 about zero after 𝜏0 and relatively 568 

smaller errors than locating the peak of the power spectra in the spectral fit method 569 

and approximating 𝑅𝑢 as an exponential function. The horizontal velocity 570 

components in the longitudinal and lateral direction contribute a significant 571 

portion of the spectral power, which is associated with the large eddies that scale 572 

nominally on the boundary layer thickness. The integral time scales were found 573 

to be relatively independent of the measurement height in the SLTEST surface 574 

layer and increase with decreasing stability parameter 𝑧/𝐿 from 𝑇𝑢
𝑥 =1.6 s during 575 

mildly stable conditions (𝑧/𝐿 = 0.13) to 𝑇𝑢
𝑥 = 3.2 s in the near-neutral ASL 576 

(𝑧/𝐿 ≈ 0) and 𝑇𝑢
𝑥 = 5.5 s in the convective ASL (𝑧/𝐿 = -2). 577 

 The logarithmic variation of the longitudinal integral scale 𝐿𝑢
𝑥  with height at the 578 

SLTEST site is consistent with that predicted by semi-empirical models [23, 27, 579 

38], however the average 𝐿𝑢
𝑥 = 42 m at a 10-m height during near-neutral 580 

conditions is 2-3 times smaller than those measured during field experiments in 581 

open country terrains. The smaller turbulence length scales are likely to be due to 582 

the very smooth terrain features of the salt flats at Dugway. Hence, the sizes of 583 

the horizontal velocity components of the energy-containing eddies with 584 

longitudinal separation distances in the lower region of the ASL are significantly 585 

dependent on the upstream terrain roughness. In contrast, the scaling of the lateral 586 

and vertical turbulence components with respect to the longitudinal component of 587 

the three-dimensional turbulence structure in a low-roughness ASL is consistent 588 

with similarity theory predictions. The ratios of the length scales with lateral and 589 

vertical separations to the longitudinal length scale, 𝐿𝑢
𝑦

/𝐿𝑢
𝑥 = 0.28, 𝐿𝑢

𝑧 /𝐿𝑢
𝑥 = 0.32, 590 

𝐿𝑤
𝑦

/𝐿𝑢
𝑥 = 0.07 and 𝐿𝑤

𝑧 /𝐿𝑢
𝑥 = 0.06, showed good agreement with other field 591 



measurements [22, 24] in open country terrains and ESDU 86010 [28], which 592 

suggests that the length scale ratios are independent of terrain roughness. 593 
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