242 research outputs found

    Novel African trypanocidal agents: membrane rigidifying peptides

    Get PDF
    The bloodstream developmental forms of pathogenic African trypanosomes are uniquely susceptible to killing by small hydrophobic peptides. Trypanocidal activity is conferred by peptide hydrophobicity and charge distribution and results from increased rigidity of the plasma membrane. Structural analysis of lipid-associated peptide suggests a mechanism of phospholipid clamping in which an internal hydrophobic bulge anchors the peptide in the membrane and positively charged moieties at the termini coordinate phosphates of the polar lipid headgroups. This mechanism reveals a necessary phenotype in bloodstream form African trypanosomes, high membrane fluidity, and we suggest that targeting the plasma membrane lipid bilayer as a whole may be a novel strategy for the development of new pharmaceutical agents. Additionally, the peptides we have described may be valuable tools for probing the biosynthetic machinery responsible for the unique composition and characteristics of African trypanosome plasma membranes

    Expression site attenuation mechanistically links antigenic variation and development in Trypanosoma brucei

    Get PDF
    We have discovered a new mechanism of monoallelic gene expression that links antigenic variation, cell cycle, and development in the model parasite Trypanosoma brucei. African trypanosomes possess hundreds of variant surface glycoprotein (VSG) genes, but only one is expressed from a telomeric expression site (ES) at any given time. We found that the expression of a second VSG alone is sufficient to silence the active VSG gene and directionally attenuate the ES by disruptor of telomeric silencing-1B (DOT1B)-mediated histone methylation. Three conserved expression-site-associated genes (ESAGs) appear to serve as signal for ES attenuation. Their depletion causes G1-phase dormancy and reversible initiation of the slender-to-stumpy differentiation pathway. ES-attenuated slender bloodstream trypanosomes gain full developmental competence for transformation to the tsetse fly stage. This surprising connection between antigenic variation and developmental progression provides an unexpected point of attack against the deadly sleeping sickness

    Electron screening in molecular fusion reactions

    Get PDF
    Recent laboratory experiments have measured fusion cross sections at center-of-mass energies low enough for the effects of atomic and molecular electrons to be important. To extract the cross section for bare nuclei from these data (as required for astrophysical applications), it is necessary to understand these screening effects. We study electron screening effects in the low-energy collisions of Z=1 nuclei with hydrogen molecules. Our model is based on a dynamical evolution of the electron wavefunctions within the TDHF scheme, while the motion of the nuclei is treated classically. We find that at the currently accessible energies the screening effects depend strongly on the molecular orientation. The screening is found to be larger for molecular targets than for atomic targets, due to the reflection symmetry in the latter. The results agree fairly well with data measured for deuteron collisions on molecular deuterium and tritium targets.Comment: 15 Page RevTeX document, twelve postscript figures, now in a uufile packag

    Surface topography quantification of super hard abrasive tools by laser scanning microscopy

    Get PDF
    Non-conventional super hard abrasive tools are made of composite materials containing super hard grains, e.g., diamond or cubic boron nitride (CBN) grains, bound by a metallic constitutive phase. These tools are usually produced by means of sintering, and are widely applied in the abrasive machining processes of modern manufacturing, especially in precision machining. The abrasive grains, which induce the material removal processes, are embedded in the metallic binder. They emerge as a consequence of self-dressing, resulting in a self-sharping effect. Therefore, the cutting surface of the tool displays an irregular topography. Quantification of surface topography scenario may supply valuable information to evaluate and understand its correlation to wear mechanisms. In this study, an experimental protocol consisting of five steps: specimen preparation, surface scanning, image assembly, image digital processing and surface quantification, was proposed and validated by characterizing two CBN honing tools used for precision machining: B151/L2/2010/50 (B151) and B91/128/x44/35 (B91) CBN honing stones. It involved the use of laser scanning microscopy and digital imaging processing for assessing significant dimensional, geometrical, and positional properties of CBN grains at the surface of super hard abrasive tools. It was shown that surface topography quantification is an effective method to evaluate and obtain the defined parameters. However, smaller grains may require images with higher resolution; thus, scanning must be refined. Finally, a critical comparative analysis of the experimental results attained for the studied tools pointed out honing stone B91 as more appropriated than B151 one for achieving a higher machining quality of the workpiece.Peer ReviewedPostprint (author's final draft

    High-pressure batch reverse osmosis (RO) for zero liquid discharge (ZLD) in a Cr(III) electroplating process

    Get PDF
    A batch RO system was designed and built for high-pressure (120 bar) operation. The system was developed for a ZLD application involving treatment of metal plating wastewater from a Cr(III) electroplating process at a major industrial plant. Hybrid semi-batch/batch operation enabled a compact design to be achieved. To maximize water recovery without exceeding a set peak pressure, a method for controlling the switch point between semi-batch and batch phases was developed. The system was tested with feed representative of rinse water from the electroplating process. A range of feed concentrations (at 10–20× dilution of the plating bath), feed flows (0.21–0.46 m3/h), water fluxes (6–14 LMH) and water recoveries (87–95.7 %) were investigated. The system successfully recovered Cr(III) and restored its concentration to that of the electrolyte bath, thus meeting the requirements for reuse in the electroplating process. Rejection of most species was >99.8 %, sufficient for reuse of the permeate as rinse. However, rejection of boric acid was only 69–80 % such that a second RO pass may be needed to remove boric acid. Specific Energy Consumption was <2.25 kWh per m3 of treated rinse water, representing a 50-fold saving compared to the current method of treatment and disposal at the industrial plant

    Screening enhancement factors for laboratory CNO and rp astrophysical reactions

    Full text link
    Cross sections of laboratory CNO and rp astrophysical reactions are enhanced due to the presence of the multi-electron cloud that surrounds the target nuclei. As a result the relevant astrophysical factors are overestimated unless corrected appropriately. This study gives both an estimate of the error committed if screening effects are not taken into account and a rough profile of the laboratory energy thresholds at which the screening effect appears. The results indicate that, for most practical purposes, screening corrections to past relevant experiments can be disregarded. Regarding future experiments, however, screening corrections to the CNO reactions will certainly be of importance as they are closely related to the solar neutrino fluxes and the rp process. Moreover, according to the present results, screening effects will have to be taken into account particularly by the current and future LUNA experiments, where screened astrophysical factors will be enhanced to a significant degree.Comment: 6 RevTex pages + 2 ps figures. (Revised version). Accepted for publication in Journal of Physics

    Fusion rate enhancement due to energy spread of colliding nuclei

    Full text link
    Experimental results for sub-barrier nuclear fusion reactions show cross section enhancements with respect to bare nuclei which are generally larger than those expected according to electron screening calculations. We point out that energy spread of target or projectile nuclei is a mechanism which generally provides fusion enhancement. We present a general formula for calculating the enhancement factor and we provide quantitative estimate for effects due to thermal motion, vibrations inside atomic, molecular or crystal system, and due to finite beam energy width. All these effects are marginal at the energies which are presently measurable, however they have to be considered in future experiments at still lower energies. This study allows to exclude several effects as possible explanation of the observed anomalous fusion enhancements, which remain a mistery.Comment: 17 pages with 3 ps figure included. Revtex styl

    Standard Solar models in the Light of New Helioseismic Constraints II. Mixing Below the Convective Zone

    Full text link
    In previous work, we have shown that recent updated standard solar models cannot reproduce the radial profile of the sound speed at the base of the convective zone (CZ) and fail to predict the Li7 depletion. In parallel, helioseismology has shown that the transition from differential rotation in the CZ to almost uniform rotation in the radiative solar interior occurs in a shallow layer called the tachocline. This layer is presumably the seat of large scale circulation and of turbulent motions. Here, we introduce a macroscopic transport term in the structure equations, which is based on a hydrodynamical description of the tachocline proposed by Spiegel and Zahn, and we calculate the mixing induced within this layer. We discuss the influence of different parameters that represent the tachocline thickness, the Brunt-Vaissala frequency at the base of the CZ, and the time dependence of this mixing process along the Sun's evolution. We show that the introduction of such a process inhibits the microscopic diffusion by about 25%. Starting from models including a pre-main sequence evolution, we obtain: a) a good agreement with the observed photospheric chemical abundance of light elements such as He3, He4, Li7 and Be9, b) a smooth composition gradient at the base of the CZ, and c) a significant improvement of the sound speed square difference between the seismic sun and the models in this transition region, when we allow the phostospheric heavy element abundance to adjust, within the observational incertitude, due to the action of this mixing process. The impact on neutrino predictions is also discussed.Comment: 15 pages, 7 figures, to be published in ApJ (used emulateapj style for latex2e). New email for A. S. Brun: [email protected]

    Radiation correction to astrophysical fusion reactions and the electron screening problem

    Get PDF
    We discuss the effect of electromagnetic environment on laboratory measurements of the nuclear fusion reactions of astrophysical interest. The radiation field is eliminated using the path integral formalism in order to obtain the influence functional, which we evaluate in the semi-classical approximation. We show that enhancement of the tunneling probability due to the radiation correction is extremely small and does not resolve the longstanding problem that the observed electron screening effect is significantly larger than theoretical predictions.Comment: 9 pages, 1 eps figure

    Astrophysical factors:Zero energy vs. Most effective energy

    Get PDF
    Effective astrophysical factors for non-resonant astrophysical nuclear reaction are invariably calculated with respect to a zero energy limit. In the present work that limit is shown to be very disadvantageous compared to the more natural effective energy limit. The latter is used in order to modify the thermonuclear reaction rate formula so that it takes into account both plasma and laboratory screening effects.Comment: 7 RevTex pages. Accepted for publication in Phys.Rev.
    • 

    corecore