64 research outputs found

    Virophages and retrotransposons colonize the genomes of a heterotrophic flagellate

    Get PDF
    Virophages can parasitize giant DNA viruses and may provide adaptive anti-giant virus defense in unicellular eukaryotes. Under laboratory conditions, the virophage mavirus integrates into the nuclear genome of the marine flagellate Cafeteria burkhardae and reactivates upon superinfection with the giant virus CroV. In natural systems, however, the prevalence and diversity of host-virophage associations has not been systematically explored. Here, we report dozens of integrated virophages in four globally sampled C. burkhardae strains that constitute up to 2% of their host genomes. These endogenous mavirus-like elements (EMALEs) separated into eight types based on GC-content, nucleotide similarity, and coding potential and carried diverse promoter motifs implicating interactions with different giant viruses. Between host strains, some EMALE insertion loci were conserved indicating ancient integration events, whereas the majority of insertion sites were unique to a given host strain suggesting that EMALEs are active and mobile. Furthermore, we uncovered a unique association between EMALEs and a group of tyrosine recombinase retrotransposons, revealing yet another layer of parasitism in this nested microbial system. Our findings show that virophages are widespread and dynamic in wild Cafeteria populations, supporting their potential role in antiviral defense in protists

    Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction

    Get PDF
    Glacial episodes have been linked to Ordovician–Silurian extinction events, but cooling itself may not be solely responsible for these extinctions. Teratological (malformed) assemblages of fossil plankton that correlate precisely with the extinction events can help identify alternate drivers of extinction. Here we show that metal poisoning may have caused these aberrant morphologies during a late Silurian (Pridoli) event. Malformations coincide with a dramatic increase of metals (Fe, Mo, Pb, Mn and As) in the fossils and their host rocks. Metallic toxins are known to cause a teratological response in modern organisms, which is now routinely used as a proxy to assess oceanic metal contamination. Similarly, our study identifies metal-induced teratology as a deep-time, palaeobiological monitor of palaeo-ocean chemistry. The redox-sensitive character of enriched metals supports emerging ‘oceanic anoxic event’ models. Our data suggest that spreading anoxia and redox cycling of harmful metals was a contributing kill mechanism during these devastating Ordovician–Silurian palaeobiological events

    The clinical utility of molecular diagnostic testing for primary immune deficiency disorders: a case based review

    Get PDF
    Primary immune deficiency disorders (PIDs) are a group of diseases associated with a genetic predisposition to recurrent infections, malignancy, autoimmunity and allergy. The molecular basis of many of these disorders has been identified in the last two decades. Most are inherited as single gene defects. Identifying the underlying genetic defect plays a critical role in patient management including diagnosis, family studies, prognostic information, prenatal diagnosis and is useful in defining new diseases. In this review we outline the clinical utility of molecular testing for these disorders using clinical cases referred to Auckland Hospital. It is written from the perspective of a laboratory offering a wide range of tests for a small developed country

    Rotavirus Rearranged Genomic RNA Segments Are Preferentially Packaged into Viruses Despite Not Conferring Selective Growth Advantage to Viruses

    Get PDF
    The rotavirus (RV) genome consists of 11 double-stranded RNA segments. Sometimes, partial sequence duplication of an RNA segment leads to a rearranged RNA segment. To specify the impact of rearrangement, the replication efficiencies of human RV with rearranged segments 7, 11 or both were compared to these of the homologous human wild-type RV (wt-RV) and of the bovine wt-RV strain RF. As judged by viral growth curves, rotaviruses with a rearranged genome (r-RV) had no selective growth advantage over the homologous wt-RV. In contrast, r-RV were selected over wt-RV during competitive experiments (i.e mixed infections between r-RV and wt-RV followed by serial passages in cell culture). Moreover, when competitive experiments were performed between a human r-RV and the bovine wt-RV strain RF, which had a clear growth advantage, rearranged segments 7, 11 or both always segregated in viral progenies even when performing mixed infections at an MOI ratio of 1 r-RV to 100 wt-RV. Lastly, bovine reassortant viruses that had inherited a rearranged segment 7 from human r-RV were generated. Although substitution of wt by rearranged segment 7 did not result in any growth advantage, the rearranged segment was selected in the viral progenies resulting from mixed infections by bovine reassortant r-RV and wt-RV, even for an MOI ratio of 1 r-RV to 107 wt-RV. Lack of selective growth advantage of r-RV over wt-RV in cell culture suggests a mechanism of preferential packaging of the rearranged segments over their standard counterparts in the viral progeny

    Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study

    Get PDF
    This is the final version. Available on open access from the American Chemical Society via the DOI in this recordThe variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a 'primary' setup and the test data are generated on 'replicate' setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies.COST (European Cooperation in Science and Technology)Portuguese Foundation for Science and TechnologyNational Research Fund of Luxembourg (FNR)China Scholarship Council (CSC)BOKU Core Facilities Multiscale ImagingDeutsche Forschungsgemeinschaft (DFG, German Research Foundation

    Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry

    No full text
    An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data)

    Chapter 15 - Super-resolution in vibrational spectroscopy: From multiple low-resolution images to high-resolution

    No full text
    International audienceImaging spectroscopy is a key tool in analytical chemistry. Although spatial molecular characterization is achieved for many applications, it often fails to produce chemical images of micron size samples as needed in chemical, environmental, and biological analysis. The aim of this chapter is thus to introduce the potential of super-resolution in vibrational spectroscopic imaging. This new approach uses several low-resolution images of the same sample observed from different angles in order to generate a higher-resolution chemical image. It is thus possible to overcome in a certain way some physical and instrumental limitations. However, we will see that Multivariate Curve Resolution methods (see Chapter 2) have to be applied prior to super-resolution when complex samples are explored

    Visualization of giant virus particles using BONCAT labeling and STED microscopy

    No full text
    Giant DNA viruses of the phylum Nucleocytoviricota are being increasingly recognized as important regulators of natural protist populations. However, our knowledge of their infection cycles is still very limited due to a lack of cultured virus-host systems and molecular tools to study them. Here, we apply bioorthogonal noncanonical amino acid tagging (BONCAT) to pulse label the marine heterotrophic flagellate Cafeteria burkhardae during infection with the lytic giant virus CroV. In absence of CroV, we report efficient incorporation of the L-methionine analog L-azidohomoalanine (AHA) into newly synthesized proteins of the methionine prototrophic C. burkhardae. During CroV infection, AHA was predominantly found in viral proteins, and single CroV virions were imaged with stimulated emission depletion (STED) super-resolution microscopy. CroV particles incorporated AHA with 95-100% efficiency while retaining their infectivity, which makes BONCAT/STED a powerful tool to study viral replication cycles in this ecologically relevant marine bacterivore. Significance Giant DNA viruses are the dominant class of protist-infecting viruses, yet the vast majority of described giant virus-protist systems remain uncultured. One of the better studied cultured systems is composed of the stramenopile Cafeteria burkhardae (previously C. roenbergensis), the giant Cafeteria roenbergensis virus (CroV) and the virophage mavirus. C. burkhardae is a widespread marine phagotrophic protist that plays an important role in regulating bacterial populations. In addition to being grazed upon by larger zooplankton, C. burkhardae populations are controlled by the lytic giant virus CroV. In turn, CroV is parasitized by the virophage mavirus that increases host population survival in the presence of CroV and forms a mutualistic symbiosis with its host. Despite being of fundamental ecological and evolutionary interest, this tripartite host-virus-virophage system suffers from a lack of molecular tools. Here, we show that CroV particles can be fluorescently labeled and imaged by super-resolution microscopy. To achieve this we established robust procedures for analyzing protist and viral populations and implemented the use of bioorthogonal noncanonical amino acid tagging (BONCAT) in a marine unicellular flagellate
    • …
    corecore